Publikation:

Male and female politicians on Twitter : A machine learning approach

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2021

Autor:innen

Beltran, Javier
Huidobro, Alba
Romero, Enrique
Padró, Lluís

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

European Journal of Political Research. Wiley-Blackwell. 2021, 60(1), pp. 239-251. ISSN 0304-4130. eISSN 1475-6765. Available under: doi: 10.1111/1475-6765.12392

Zusammenfassung

How does the language of male and female politicians differ when they communicate directly with the public on social media? Do citizens address them differently? We apply Lasso logistic regression models to identify the linguistic features that most differentiate the language used by or addressed to male and female Spanish politicians. Male politicians use more words related to politics, sports, ideology and infrastructure, while female politicians talk about gender and social affairs. The choice of emojis varies greatly across genders. In a novel analysis of tweets written by citizens, we find evidence of gender-specific insults, and note that mentions of physical appearance and infantilising words are disproportionately found in text addressed to female politicians. The results suggest that politicians conform to gender stereotypes online and reveal ways in which citizens treat politicians differently depending on their gender.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BELTRAN, Javier, Aina GALLEGO, Alba HUIDOBRO, Enrique ROMERO, Lluís PADRÓ, 2021. Male and female politicians on Twitter : A machine learning approach. In: European Journal of Political Research. Wiley-Blackwell. 2021, 60(1), pp. 239-251. ISSN 0304-4130. eISSN 1475-6765. Available under: doi: 10.1111/1475-6765.12392
BibTex
@article{Beltran2021femal-55625,
  year={2021},
  doi={10.1111/1475-6765.12392},
  title={Male and female politicians on Twitter : A machine learning approach},
  number={1},
  volume={60},
  issn={0304-4130},
  journal={European Journal of Political Research},
  pages={239--251},
  author={Beltran, Javier and Gallego, Aina and Huidobro, Alba and Romero, Enrique and Padró, Lluís}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55625">
    <dc:language>eng</dc:language>
    <dc:contributor>Beltran, Javier</dc:contributor>
    <dcterms:abstract xml:lang="eng">How does the language of male and female politicians differ when they communicate directly with the public on social media? Do citizens address them differently? We apply Lasso logistic regression models to identify the linguistic features that most differentiate the language used by or addressed to male and female Spanish politicians. Male politicians use more words related to politics, sports, ideology and infrastructure, while female politicians talk about gender and social affairs. The choice of emojis varies greatly across genders. In a novel analysis of tweets written by citizens, we find evidence of gender-specific insults, and note that mentions of physical appearance and infantilising words are disproportionately found in text addressed to female politicians. The results suggest that politicians conform to gender stereotypes online and reveal ways in which citizens treat politicians differently depending on their gender.</dcterms:abstract>
    <dcterms:issued>2021</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Huidobro, Alba</dc:contributor>
    <dcterms:title>Male and female politicians on Twitter : A machine learning approach</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Beltran, Javier</dc:creator>
    <dc:creator>Padró, Lluís</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Gallego, Aina</dc:creator>
    <dc:contributor>Romero, Enrique</dc:contributor>
    <dc:contributor>Padró, Lluís</dc:contributor>
    <dc:creator>Romero, Enrique</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55625"/>
    <dc:contributor>Gallego, Aina</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-22T15:05:15Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-22T15:05:15Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Huidobro, Alba</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen