Publikation: Resonantly driven CNOT gate for electron spins
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Single-qubit rotations and two-qubit CNOT operations are crucial ingredients for universal quantum computing. Although high-fidelity single-qubit operations have been achieved using the electron spin degree of freedom, realizing a robust CNOT gate has been challenging because of rapid nuclear spin dephasing and charge noise. We demonstrate an efficient resonantly driven CNOT gate for electron spins in silicon. Our platform achieves single-qubit rotations with fidelities greater than 99%, as verified by randomized benchmarking. Gate control of the exchange coupling allows a quantum CNOT gate to be implemented with resonant driving in ~200 nanoseconds. We used the CNOT gate to generate a Bell state with 78% fidelity (corrected for errors in state preparation and measurement). Our quantum dot device architecture enables multi-qubit algorithms in silicon.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZAJAC, David M., Anthony J. SIGILLITO, Maximilian RUSS, Felix BORJANS, Jacob M. TAYLOR, Guido BURKARD, Jason R. PETTA, 2018. Resonantly driven CNOT gate for electron spins. In: Science. 2018, 359(6374), pp. 439-442. ISSN 0036-8075. eISSN 1095-9203. Available under: doi: 10.1126/science.aao5965BibTex
@article{Zajac2018Reson-41552, year={2018}, doi={10.1126/science.aao5965}, title={Resonantly driven CNOT gate for electron spins}, number={6374}, volume={359}, issn={0036-8075}, journal={Science}, pages={439--442}, author={Zajac, David M. and Sigillito, Anthony J. and Russ, Maximilian and Borjans, Felix and Taylor, Jacob M. and Burkard, Guido and Petta, Jason R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41552"> <dc:creator>Russ, Maximilian</dc:creator> <dcterms:title>Resonantly driven CNOT gate for electron spins</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41552"/> <dc:creator>Zajac, David M.</dc:creator> <dc:contributor>Borjans, Felix</dc:contributor> <dc:creator>Taylor, Jacob M.</dc:creator> <dcterms:issued>2018</dcterms:issued> <dc:creator>Sigillito, Anthony J.</dc:creator> <dc:contributor>Russ, Maximilian</dc:contributor> <dc:contributor>Petta, Jason R.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Sigillito, Anthony J.</dc:contributor> <dc:creator>Petta, Jason R.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-22T08:16:38Z</dcterms:available> <dc:contributor>Zajac, David M.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:abstract xml:lang="eng">Single-qubit rotations and two-qubit CNOT operations are crucial ingredients for universal quantum computing. Although high-fidelity single-qubit operations have been achieved using the electron spin degree of freedom, realizing a robust CNOT gate has been challenging because of rapid nuclear spin dephasing and charge noise. We demonstrate an efficient resonantly driven CNOT gate for electron spins in silicon. Our platform achieves single-qubit rotations with fidelities greater than 99%, as verified by randomized benchmarking. Gate control of the exchange coupling allows a quantum CNOT gate to be implemented with resonant driving in ~200 nanoseconds. We used the CNOT gate to generate a Bell state with 78% fidelity (corrected for errors in state preparation and measurement). Our quantum dot device architecture enables multi-qubit algorithms in silicon.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Burkard, Guido</dc:contributor> <dc:creator>Burkard, Guido</dc:creator> <dc:contributor>Taylor, Jacob M.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-22T08:16:38Z</dc:date> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Borjans, Felix</dc:creator> </rdf:Description> </rdf:RDF>