Publikation: Parallel motion vision pathways in the brain of a tropical bee
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Spatial orientation is a prerequisite for most behaviors. In insects, the underlying neural computations take place in the central complex (CX), the brain’s navigational center. In this region different streams of sensory information converge to enable context-dependent navigational decisions. Accordingly, a variety of CX input neurons deliver information about different navigation-relevant cues. In bees, direction encoding polarized light signals converge with translational optic flow signals that are suited to encode the flight speed of the animals. The continuous integration of speed and directions in the CX can be used to generate a vector memory of the bee’s current position in space in relation to its nest, i.e., perform path integration. This process depends on specific, complex features of the optic flow encoding CX input neurons, but it is unknown how this information is derived from the visual periphery. Here, we thus aimed at gaining insight into how simple motion signals are reshaped upstream of the speed encoding CX input neurons to generate their complex features. Using electrophysiology and anatomical analyses of the halictic bees Megalopta genalis and Megalopta centralis , we identified a wide range of motion-sensitive neurons connecting the optic lobes with the central brain. While most neurons formed pathways with characteristics incompatible with CX speed neurons, we showed that one group of lobula projection neurons possess some physiological and anatomical features required to generate the visual responses of CX optic-flow encoding neurons. However, as these neurons cannot explain all features of CX speed cells, local interneurons of the central brain or alternative input cells from the optic lobe are additionally required to construct inputs with sufficient complexity to deliver speed signals suited for path integration in bees.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HONKANEN, Anna, Ronja HENSGEN, Kavitha KANNAN, Andrea ADDEN, Eric WARRANT, William WCISLO, Stanley HEINZE, 2023. Parallel motion vision pathways in the brain of a tropical bee. In: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. Springer. 2023, 209(4), S. 563-591. ISSN 0340-7594. eISSN 1432-1351. Verfügbar unter: doi: 10.1007/s00359-023-01625-xBibTex
@article{Honkanen2023-07Paral-73388, title={Parallel motion vision pathways in the brain of a tropical bee}, year={2023}, doi={10.1007/s00359-023-01625-x}, number={4}, volume={209}, issn={0340-7594}, journal={Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology}, pages={563--591}, author={Honkanen, Anna and Hensgen, Ronja and Kannan, Kavitha and Adden, Andrea and Warrant, Eric and Wcislo, William and Heinze, Stanley} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73388"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Hensgen, Ronja</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Heinze, Stanley</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-21T10:29:27Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Wcislo, William</dc:creator> <dc:contributor>Warrant, Eric</dc:contributor> <dc:contributor>Hensgen, Ronja</dc:contributor> <dc:language>eng</dc:language> <dcterms:title>Parallel motion vision pathways in the brain of a tropical bee</dcterms:title> <dc:creator>Kannan, Kavitha</dc:creator> <dc:contributor>Wcislo, William</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Warrant, Eric</dc:creator> <dc:contributor>Kannan, Kavitha</dc:contributor> <dc:contributor>Adden, Andrea</dc:contributor> <dc:creator>Heinze, Stanley</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-21T10:29:27Z</dcterms:available> <dc:creator>Adden, Andrea</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73388"/> <dcterms:abstract>Spatial orientation is a prerequisite for most behaviors. In insects, the underlying neural computations take place in the central complex (CX), the brain’s navigational center. In this region different streams of sensory information converge to enable context-dependent navigational decisions. Accordingly, a variety of CX input neurons deliver information about different navigation-relevant cues. In bees, direction encoding polarized light signals converge with translational optic flow signals that are suited to encode the flight speed of the animals. The continuous integration of speed and directions in the CX can be used to generate a vector memory of the bee’s current position in space in relation to its nest, i.e., perform path integration. This process depends on specific, complex features of the optic flow encoding CX input neurons, but it is unknown how this information is derived from the visual periphery. Here, we thus aimed at gaining insight into how simple motion signals are reshaped upstream of the speed encoding CX input neurons to generate their complex features. Using electrophysiology and anatomical analyses of the halictic bees Megalopta genalis and Megalopta centralis , we identified a wide range of motion-sensitive neurons connecting the optic lobes with the central brain. While most neurons formed pathways with characteristics incompatible with CX speed neurons, we showed that one group of lobula projection neurons possess some physiological and anatomical features required to generate the visual responses of CX optic-flow encoding neurons. However, as these neurons cannot explain all features of CX speed cells, local interneurons of the central brain or alternative input cells from the optic lobe are additionally required to construct inputs with sufficient complexity to deliver speed signals suited for path integration in bees.</dcterms:abstract> <dc:contributor>Honkanen, Anna</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73388/4/Honkanen_2-mojwbdbtn3ij5.pdf"/> <dcterms:issued>2023-07</dcterms:issued> <dc:creator>Honkanen, Anna</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73388/4/Honkanen_2-mojwbdbtn3ij5.pdf"/> </rdf:Description> </rdf:RDF>