Publikation:

Analytical Development and Application of Mass Spectrometry to skeletal muscle proteomics and Identification of Structure Modifications

Lade...
Vorschaubild

Dateien

DissBernevic.pdf
DissBernevic.pdfGröße: 8.67 MBDownloads: 1313

Datum

2011

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Analytische Entwicklung und Anwendung der Massenspektrometrie auf Skelettmuskelproteine und Identifizierung von Strukturmodifizierungen
Publikationstyp
Dissertation
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Two-dimensional gel electrophoresis in combination with high resolution mass spectrometry, e.g. Fourier Transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) represent efficient techniques which have been established in proteome analysis from biological samples. Muscle proteins have been intensively studied by biochemists in the past focusing their attention mainly on characterization structure and function of these proteins as well as their interaction with other biomolecules. Muscle proteins have been classified into three categories based on their morphological-functional features and extraction by using different buffers as follows: (i), contractile proteins involved in the muscle contraction, (ii), metabolic muscle proteins including enzymes involved in different pathways of muscle energy metabolism, and (iii), structural proteins represented by proteins which maintain the muscle structure. Muscle proteins have attracted wide interest of many researchers because of complex changes in these proteins during myogenesis and cell differentiation followed by formation of variorous types of myofibrils and changes in protein patterns during the development of muscle deseases. Hence, much research effort has been directed into the characterization of muscle structural changes during post-mortem storage with the focus on protein degradation and oxidation. In this work 2-D gel electrophoresis in combination with high resolution FT-ICR mass spectrometry were used as major tools for identification and structural characterization of muscle protein changes. While 2-D gel electrophoresis offers high resolution of protein separation, FT-ICR mass spectrometry provides high resolution, mass accuracy and mass sensitivity leading to unambiguos protein identification.

The first part of the dissertation was concentrated on the mass spectrometric identification of intact and truncated protein products after 2-D gel separation as well as 2-D gel mapping of muscle protein denaturation as a result of pH drop during post-mortem storage. In the initial part a number of different buffers were tested in an attempt to optimize the muscle protein extraction and solubilization. The use of strongly reducing-denaturing buffer yielded a good solubilization of proteins, especially contractile proteins such as actin, tropomyosin and myosin, while the use of non-denaturing solubilization resulted in a good solubilization of metabolic proteins. Proteolytic truncation may result from the action of calpain proteinases which, although, not directly observed in 2-D gels, due to their very low abundances. However, MALDI-FTICR MS provided the identification of over 70 intact and truncated protein products. Notable, was the identification of an intact isoform of CKM (mol. weight, 43 kDa) and the identification of two truncation products with molecular weights of 17 and 13 kDa is shown, with sequences corresponding to residues (87-236) and (267-358), respectively, which represent proteolytic cleavage of CKM between residues 237 and 266. The solubilization of muscle proteins in non-denaturing buffer resulted in highly reproducible gels and therefore was used to generate a detailed 2-DE reference protein map for porcine Longissimus dorsi. This map was used to draw a tentative map to examine changes during the post-mortem storage according to the pH change and water loss values and to identify those proteins by mass spectrometry. Muscle proteins were extracted from muscle samples collected 45 min. 24 h and 48 h post-mortem and separated by 2-D gel electrophoresis followed by comparative analysis of the gels using the PDQuest software. 2-D gel maps showed an increase in denaturation of contractile proteins at low pH according to the increase of post-mortem time. Hence, the comparison of low and high pH 24 h M. Semimembranosus showed muscle protein denaturation in both cases. Mass spectrometric analysis of protein gel spots stained with Coomassie-blue showing changes revealed the identification of actin, tropomyosin and several myosin isoforms.

In addition to the Coomassie-blue and silver staining muscle proteins were visualized by a newly developed “stain-free” procedure using the native fluorescence of aromatic amino acids in proteins. In the first series of experiments using a fluorecence Gel Bioanalyser, the sensitivity was tested by comparative analysis of gels run in parallel and stained with Coomassie, silver and native fluorescence detection. The results show that the sensitivity of the stain-free detection is close to silver staining. The fluorescence stability was investigated and it was observed that the fixation of proteins using halogenated derivatives increased the protein stability of prolonged times. Special tools were developed for the exact localization and excision of the protein spots from the gel for subsequent in-gel digestion and mass spectrometric protein identification. A number of proteins such as actin, creatine kinase, triosephosphate isomerase and several isoforms of myosin were successfully identified by MALDI-TOF MS.

The second part of the dissertation was focused on the detection and mass spectrometric identification of muscle protein oxidation, particularly protein carbonylation which may be caused either by direct attack via metal catalysed oxidation to amino acid side chains, or by conjugation with highly reactive carbonyl compounds produced as end-products of lipid peroxidation such as 4-hydroxy-2-nonenal (HNE), malondialdehyde and acrolein. Protein carbonyls were detected by forming a hydrazone derivative with 2,4-dinitrophenylhydrazine (DNP). The derivatized protein products were separated by molecular weight using gel electrophoresis (1-DE and/or 2-DE), blotted to a support matrix (e.g. PVDF), and visualized by immunostaining with antibodies that recognize the DNP portion of the hydrazone. Using this approach a comparative analysis of protein oxidation level between biopsy and 24 h post-mortem was performed. Approximately 70 muscle proteins were detected to be oxidatively modified after gel-immunoblot alignment of which 20 were identified by mass spectrometry. No significant differences of the oxidation levels were observed between the samples therefore further set of experiments was performed by comparing oxidation of protein extracted from muscle with different pH values. In this case the oxidation of myosin light chain 1 and myosin regulatory light chain at high pH was identified.

A further part of this thesis was focused on the identification and mass spectrometric determination of oxidative structure modifications. Such modifications are expressed at very low stoichiometric levels. High performance nano-LC- tandem-mass spectrometry was employed which enabled the identification of several 4-hydroxy-2-nonenal adducts at His and Lys residues of α-actin, creatine kinase and adanylate kinase, which showed high immunoreactivity against anti-DNP antibodies. No HNE adduct was identified at Cys residue because Cys is usually involved in disulfide bond formation although it is the most nucleophilic candidate for HNE adduct formation. For structure determination collision-induced dissociation (CID) was employed which represents a most widely used peptide fragmentation technique implemented in MS/MS. HNE-containing peptides showed in a neutral loss of HNE (156 Da; 78 or 52 Da for doubly or triply charged peptide) from the precursor or product ions upon CID. Further, mass spectrometric data revealed the identification of Lys oxidation with the formation of aminoadipic semialdehyde.

The third part of the dissertation involved the identification and characterization of physiological protein nitration in sputum of Cystic Fibrosis patients, using a combination of two-dimensional gel electrophoresis, immunoblotting and affinity-mass spectrometric methods. The first experimental step involved sputum protein extraction, separation by 2-D gel and immunoblotting using followed by mass spectrometric identification of protein spots which showed immunoreactvity against anti-3-nitrotyrosine antibodies. The most intense immune response was obtained from leucocyte elastase inhibitor; which was further subjected to nano-LC-tandem MS in an attempt to identified possible tyrosine nitration sites. However, the mass spectrometric data revealed the identification of several hydroxytyrosine structures. Further, an affinity-mass spectrometric experiment was employed in an attempt to enrich the amount of nitrated protein to enable the identification nitration sites. In the initial experiment the immobilization of anti-3-nitrotyrosine antibody on the affinity column was tested using nitrated and non-nitrated proteins prior incubation with sputum proteins. The elution fractions were collected, separated by SDS PAGE and stained with Coomassie blue showing the presence of one consistent band at approximately 80 kDa which was identified as lactotransferrin. All the tandem-MS spectra were revealed the presence of several hydroxytyrosine modifications; however no tyrosine nitration was identified.

Zusammenfassung in einer weiteren Sprache

Zweidimensionale Gelelektrophorese in Kombination mit hochauflösender Massenspektrometrie, wie z.B. die Fourier Transform-Ionen-zyklotron-Resonanz-Massenspektrometrie (FT-ICR-MS) haben sich in den letzten Jahren als leistungsfähige Techniken zur Proteomanalyse von biologischem Material etabliert. Skelettmuskel-Proteine wurden in früheren Arbeiten intensiv in der Biochemie untersucht, wobei das Hauptaugenmerk auf der Charakterisierung von Struktur und Funktion dieser Proteine, sowie deren Wechselwirkung mit anderen Biomolekülen lag. Muskelproteine wurden auf der Grundlage von morphologisch-funktionellen Eigenschaften und ihrer Extrahierbarkeit mittels unterschiedlicher Puffersysteme in drei Kategorien eingeteilt: (i), kontraktile Proteine, die bei der Muskelkontraktion beteiligt sind, (ii), metabolische Muskelproteine einschließlich Enzyme, die am Energiestoffwechsel des Muskels beteiligt sind, und (iii), Strukturproteine, welche die Muskelstruktur erhalten. Muskelproteine sind in den letzten Jahren Gegenstand intensiver Untersuchungen aufgrund von Ergebnissen, dass während Myogenese und Zelldifferenzierung komplexe Veränderungen dieser Proteine stattfinden, vor allem die Bildung unterschiedlicher Typen von Myofibrillen, sowie Veränderungen des Expressionsmusters im Verlauf muskulärer Erkrankungen. Daher sind die Charakterisierung von strukturellen Veränderungen des Muskels während der Lagerung post-mortem mit Hinblick auf Proteinabbau und Oxidation vor grossem Interesse. Zielsetzungen der vorliegenden Dissertation waren die analytische Entwicklung und Anwendung der 2-D Gel-Elektrophorese in Kombination mit hochauflösender Massenspektrometrie zur Identifizierung und strukturellen Charakterisierung von Veränderungen der Skelettmuskelproteine des Schwein (Sus Scrofa). Während durch 2-D-Gelelektrophorese eine hochaufgelöste Proteintrennung ermöglicht wird, bietet die FT-ICR-MS ultrahohe Auflösung und Massengenauigkeit verbunden mit hoher Empfindlichkeit, die eindeutige Proteinidentifizierungen ermöglicht.

Der erste Teil der Dissertation konzentriert sich auf die massenspektrometrische Identifizierung von intakten und trunkierten Muskel-Proteinen nach 2-D Gel-Elektrophorese sowie 2-D „Gel-Mapping“, wobei insbesondere die Denaturierung der Proteine als Ergebnis der Erniedrigung des pH-Werts während der post-mortem-Lagerung untersucht wurde. Zunächst wurden verschiedene Puffersysteme zur Optimierung der Extraktion und Löslichkeit der Muskelproteine evaluiert. Die Verwendung von stark reduzierendem Denaturierungspuffer ergab eine gute Solubilisierung von Proteinen, insbesondere von kontraktilen Proteinen wie Aktin, Tropomyosin und Myosin, während die Verwendung von nicht-denaturierenden Puffern zu einer guten Löslichkeit von metabolischen Proteinen führte. Proteolytische Trunkierung kann auf die Wirkung von Calpain-Proteinasen zurückgeführt werden, die aufgrund ihrer geringen Konzentrationen nicht direkt in 2-D Gelen gefunden wurden. Mit Hilfe der MALDI-FTICR MS konnte die Identifizierung von über 70 intakten und trunkierten Proteinprodukten erzielt werden. Bemerkenswert war die Identifizierung einer intakten Isoform des Proteins CKM (Mol. Gewicht 43 kDa) sowie von zwei trunkierten Produkten mit Molekulargewichten von 17 und 13 kDa, mit den Partialsequenzen (87-236) und (267-358), die durch proteolytische Spaltung des Proteins CKM in der Sequenzdomäne (237-266) entstehen. Die Solubilisierung von Muskelproteinen in nicht-denaturierenden Puffern führte zu hochgradig reproduzierbaren Gelen und wurde somit verwendet, um eine detaillierte 2-DE- Proteinkartirung des Skeletmuskels (Longissimus dorsi) zu generieren. Diese Kartierung wurde verwendet, um post-translationale Modifikationen zu identifizieren, die post mortem durch pH-Änderung und Wasserverlust auftreten. Muskelproteine wurden aus den Muskelproben 45 min, 24 h und 48 h post-mortem extrahiert, mittels 2D Gelelektrophorese aufgetrennt und die erhaltenen Proteinmuster nach Färbung mit der PDQuest- Software verglichen. Die 2D-Gelkartierung zeigte eine Zunahme der Denaturierung von kontraktilen Proteinen bei niedrigem pH-Wert, gleichbedeutend mit einer Zunahme der Lagerzeit post mortem. Ebenso ergab der Vergleich von hohem und niedrigem pH-Wert 24 h post mortem bei M. semimembranosus Proteindenaturierung in beiden Fällen. Die massenspektrometrische Analyse von Protein-Gel-Spots nach Färbung mit Coomassie Blau ergab die Identifizierung von Aktin, Tropomyosin und mehrere Myosin-Isoformen.

Neben der Coomassie- und Silber- Färbung wurden Muskelproteine mit einem neu entwickelten „färbefreies“ Detektionsverfahren unter Verwendung der nativen Fluoreszenz der aromatischen Aminosäuren visualisiert. In ersten Untersuchungen mit einem Fluoreszenz-basierten „Gel Bioanalyzer“ wurde die Empfindlichkeit dieser Detektionsmethode durch vergleichende Analyse von Gelen nach Coomassie-, Silber-und nativer Fluoreszenzdetektion getestet. Die Ergebnisse zeigen, dass die Empfindlichkeit der Fluoreszenzdetektion nahezu identisch mit der Silberfärbung ist. Die Fluoreszenz-Stabilität wurde untersucht und es wurde beobachtet, dass die Fixierung von Proteinen unter Verwendung von halogenierten Derivaten die Stabilität des Proteins über eine längere Zeit gewährleistet. Spezielle Werkzeuge wurden für die genaue Lokalisierung und das Ausschneiden der Proteinspots aus dem Gel für anschließenden in-Gel-Abbau und massenspektrometrische Identifizierung von Proteinen entwickelt. Eine Reihe von Proteinen wie Aktin, Kreatinkinase, Triosephosphatisomerase und mehrere Isoformen von Myosin wurden erfolgreich durch MALDI-TOF MS identifiziert.

Der zweite Teil der Dissertation konzentrierte sich auf die Detection und massenspektrometrische Identifizierung von oxidativen Modifizierungen von Muskelproteinen, insbesondere Proteincarbonylierung, durch direkten Angriff über Metall-katalysierte Oxidation von Aminosäure-Seitenketten, oder durch Konjugation mit hochreaktiven Carbonylverbindungen. Als Endprodukte der Lipidperoxidation, wurden 4-Hydroxy-2-nonenal (HNE), Malondialdehyd und Acrolein- Derivate identifiziert. Protein-Carbonyle wurden durch die Bildung eines Hydrazonderivats mit 2,4-Dinitrophenylhydrazin (DNP) detektiert. Die derivatisierten Proteine wurden mittels Gelelektrophorese getrennt, auf eine PVDF-Membran geblottet, und durch Immunreaktion mit DNP-spezifischen Antikörpern nachgewiesen. Mit diesem Ansatz wurde eine vergleichende Analyse des Ausmaßes der Protein-Oxidation von Gewebeproben nach Biopsie und 24 h post mortem durchgeführt. Etwa 70 Muskelproteine wurden mittels Gel-Immunoblot als oxidativ modifiziert detektiert, von denen etwa 20 durch Massenspektrometrie identifiziert wurden. Da keine signifikanten Unterschiede der Oxidation zwischen den Proben gefunden wurden, wurden weitere Experimente durchgeführt, in denen die Oxidation von Proteinen verglichen wurde, die bei unterschiedlichen pH-Werten aus dem Muskel extrahiert wurden. Dabei eine Oxidation der leichten Kette 1 von Myosin und der regulatorischen leichten Kette von Myosin bei hohem pH-Wert nachgewiesen.

Ein weiterer Teil dieser Arbeit befasste sich mit der Identifizierung und massenspektrometrischen Bestimmung von oxidativen Struktumodifikationen. Solche Modifikationen werden in sehr geringen stöchiometrischen Mengen gebildet. Nano-LC-Tandem-Massenspektrometrie wurde zur Identifizierung von 4-Hydroxy-2-nonenal-Addukten an His- und Lys-Resten von α-Aktin, Kreatinkinase und Adenylatkinase eingesetzt, die eine hohe Immunreaktivität gegen anti-DNP Antikörper aufweisen. An Cys-Resten konnten keine HNE-Addukte identifiziert werden, da Cys in der Regel an der Bildung von Disulfidbindungen beteiligt ist. Zur Strukturbestimmung wurde die stossinduzierte Dissoziation (CID) angewendet, die eine der am häufigsten eingesetzten Peptidfragmentierungstechniken für die MS/MS-Analyse darstellt. HNE-Peptide weisen einen Neutralverlust von HNE (156, 78 oder 52 amu) für zwei- oder dreifach geladene Peptidionen auf. Außerdem ergaben die massenspektrometrischen Daten die Identifizierung von Lys-Oxidation durch Bildung von Aminoadipinsäure- Semialdehyd.

Der dritte Teil der Dissertation beschäftigte sich mit der Identifizierung und Charakterisierung der physiologischen Proteinnitrierung in Sputum von Patienten mit zystischer Fibrose durch Kombination von zweidimensionaler Gelelektrophorese, Immunblot und Affinitäts-Massenspektrometrie. Die experimentellen Einzelschritte bestanden aus ProteinExtraktion aus Sputum, Trennung durch 2D-Gelelektrophorese und Immunoblot, gefolgt von massenspektrometrischer Identifizierung von Proteinbanden mit Immunreaktivität gegen anti-3-Nitrotyrosin-Antikörper. Die intensivste Immunantwort wurde von Leukozyten-Elastase-Inhibitor erhalten, Die massenspektrometrischen Daten zeigten jedoch lediglich die Identifizierung von mehreren Hydroxytyrosin-Strukturen. Ferner wurde ein Affinitäts- massenspektrometrisches Experiment durchgeführt, um die Menge von evtl. Nitrotyrosin- Modifikationen zu erhöhen. Im ersten Experiment wurde die Immobilisierung eines Anti-3-Nitrotyrosin-Antikörpers auf einer Affinitätssäule durch Inkubierung mit nitrierten und nicht nitrierten Proteinen getestet. Die anschliessende Inkubation mit Proteinen aus Sputum und Elution zeigte die Anwesenheit einer konsistenten Bande bei etwa 80 kDa, die als Lactotransferrin identifiziert wurde. Mit Hilfe der Tandem-MS wurden mehrere Hydroxytyrosin-Modifizierungen identifiziert, allerdings konnte keine Tyrosin-Nitrierung identifiziert werden.

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Proteomics, Mass spectrometry, Post-translational modifications

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERNEVIC, Bogdan, 2011. Analytical Development and Application of Mass Spectrometry to skeletal muscle proteomics and Identification of Structure Modifications [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Bernevic2011Analy-16365,
  year={2011},
  title={Analytical Development and Application of Mass Spectrometry to skeletal muscle proteomics and Identification of Structure Modifications},
  author={Bernevic, Bogdan},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/16365">
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Analytical Development and Application of Mass Spectrometry to skeletal muscle proteomics and Identification of Structure Modifications</dcterms:title>
    <dc:creator>Bernevic, Bogdan</dc:creator>
    <dcterms:alternative>Analytische Entwicklung und Anwendung der Massenspektrometrie auf Skelettmuskelproteine und Identifizierung von Strukturmodifizierungen</dcterms:alternative>
    <dc:contributor>Bernevic, Bogdan</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-03T10:57:07Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">Two-dimensional gel electrophoresis in combination with high resolution mass spectrometry, e.g. Fourier Transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) represent efficient techniques which have been established in proteome analysis from biological samples. Muscle proteins have been intensively studied by biochemists in the past focusing their attention mainly on characterization structure and function of these proteins as well as their interaction with other biomolecules. Muscle proteins have been classified into three categories based on their morphological-functional features and extraction by using different buffers as follows: (i), contractile proteins involved in the muscle contraction, (ii), metabolic muscle proteins including enzymes involved in different pathways of muscle energy metabolism, and (iii), structural proteins represented by proteins which maintain the muscle structure.  Muscle proteins have attracted wide interest of many researchers because of complex changes in these proteins during myogenesis and cell differentiation followed by formation of variorous types of myofibrils and changes in protein patterns during the development of muscle deseases. Hence, much research effort has been directed into the characterization of muscle structural changes during post-mortem storage with the focus on protein degradation and oxidation. In this work 2-D gel electrophoresis in combination with high resolution FT-ICR mass spectrometry were used as major tools for identification and structural characterization of muscle protein changes. While 2-D gel electrophoresis offers high resolution of protein separation, FT-ICR mass spectrometry provides high resolution, mass accuracy and mass sensitivity leading to unambiguos protein identification.&lt;br /&gt;&lt;br /&gt;The first part of the dissertation was concentrated on the mass spectrometric identification of intact and truncated protein products after 2-D gel separation as well as 2-D gel mapping of muscle protein denaturation as a result of pH drop during post-mortem storage. In the initial part a number of different buffers were tested in an attempt to optimize the muscle protein extraction and solubilization. The use of strongly reducing-denaturing buffer yielded a good solubilization of proteins, especially contractile proteins such as actin, tropomyosin and myosin, while the use of non-denaturing solubilization resulted in a good solubilization of metabolic proteins. Proteolytic truncation may result from the action of calpain proteinases which, although, not directly observed in 2-D gels, due to their very low abundances. However, MALDI-FTICR MS provided the identification of over 70 intact and truncated protein products. Notable, was the identification of an intact isoform of CKM (mol. weight, 43 kDa) and the identification of two truncation products with molecular weights of 17 and 13 kDa is shown, with sequences corresponding to residues (87-236) and (267-358), respectively, which represent proteolytic cleavage of CKM between residues 237 and 266. The solubilization of muscle proteins in non-denaturing buffer resulted in highly reproducible gels and therefore was used to generate a detailed 2-DE reference protein map for porcine Longissimus dorsi. This map was used to draw a tentative map to examine changes during the post-mortem storage according to the pH change and water loss values and to identify those proteins by mass spectrometry. Muscle proteins were extracted from muscle samples collected 45 min. 24 h and 48 h post-mortem and separated by 2-D gel electrophoresis followed by comparative analysis of the gels using the PDQuest software. 2-D gel maps showed an increase in denaturation of contractile proteins at low pH according to the increase of post-mortem time. Hence, the comparison of low and high pH 24 h M. Semimembranosus showed muscle protein denaturation in both cases. Mass spectrometric analysis of protein gel spots stained with Coomassie-blue showing changes revealed the identification of actin, tropomyosin and several myosin isoforms.&lt;br /&gt;&lt;br /&gt;In addition to the Coomassie-blue and silver staining muscle proteins were visualized by a newly developed “stain-free” procedure using the native fluorescence of aromatic amino acids in proteins.  In the first series of experiments using a fluorecence Gel Bioanalyser, the sensitivity was tested by comparative analysis of gels run in parallel and stained with Coomassie, silver and native fluorescence detection. The results show that the sensitivity of the stain-free detection is close to silver staining. The fluorescence stability was investigated and it was observed that the fixation of proteins using halogenated derivatives increased the protein stability of prolonged times. Special tools were developed for the exact localization and excision of the protein spots from the gel for subsequent in-gel digestion and mass spectrometric protein identification. A number of proteins such as actin, creatine kinase, triosephosphate isomerase and several isoforms of myosin were successfully identified by MALDI-TOF MS.&lt;br /&gt;&lt;br /&gt;The second part of the dissertation was focused on the detection and mass spectrometric identification of muscle protein oxidation, particularly protein carbonylation which may be caused either by direct attack via metal catalysed oxidation to amino acid side chains, or by conjugation with highly reactive carbonyl compounds produced as end-products of lipid peroxidation such as 4-hydroxy-2-nonenal (HNE), malondialdehyde and acrolein. Protein carbonyls were detected by forming a hydrazone derivative with 2,4-dinitrophenylhydrazine (DNP). The derivatized protein products were separated by molecular weight using gel electrophoresis (1-DE and/or 2-DE), blotted to a support matrix (e.g. PVDF), and visualized by immunostaining with antibodies that recognize the DNP portion of the hydrazone. Using this approach a comparative analysis of protein oxidation level between biopsy and 24 h post-mortem was performed. Approximately 70 muscle proteins were detected to be oxidatively modified after gel-immunoblot alignment of which 20 were identified by mass spectrometry. No significant differences of the oxidation levels were observed between the samples therefore further set of experiments was performed by comparing oxidation of protein extracted from muscle with different pH values. In this case the oxidation of myosin light chain 1 and myosin regulatory light chain at high pH was identified.&lt;br /&gt;&lt;br /&gt;A further part of this thesis was focused on the identification and mass spectrometric determination of oxidative structure modifications. Such modifications are expressed at very low stoichiometric levels. High performance nano-LC- tandem-mass spectrometry was employed which enabled the identification of several 4-hydroxy-2-nonenal adducts at His and Lys residues of α-actin, creatine kinase and adanylate kinase, which showed high immunoreactivity against anti-DNP antibodies. No HNE adduct was identified at Cys residue because Cys is usually involved in disulfide bond formation although it is the most nucleophilic candidate for HNE adduct formation. For structure determination collision-induced dissociation (CID) was employed which represents a most widely used peptide fragmentation technique implemented in MS/MS. HNE-containing peptides showed in a neutral loss of HNE (156 Da; 78 or 52 Da for doubly or triply charged peptide) from the precursor or product ions upon CID. Further, mass spectrometric data revealed the identification of Lys oxidation with the formation of aminoadipic semialdehyde.&lt;br /&gt;&lt;br /&gt;The third part of the dissertation involved the identification and characterization of physiological protein nitration in sputum of Cystic Fibrosis patients, using a combination of two-dimensional gel electrophoresis, immunoblotting and affinity-mass spectrometric methods. The first experimental step involved sputum protein extraction, separation by 2-D gel and immunoblotting using followed by mass spectrometric identification of protein spots which showed immunoreactvity against anti-3-nitrotyrosine antibodies. The most intense immune response was obtained from leucocyte elastase inhibitor; which was further subjected to nano-LC-tandem MS in an attempt to identified possible tyrosine nitration sites. However, the mass spectrometric data revealed the identification of several hydroxytyrosine structures. Further, an affinity-mass spectrometric experiment was employed in an attempt to enrich the amount of nitrated protein to enable the identification nitration sites. In the initial experiment the immobilization of anti-3-nitrotyrosine antibody on the affinity column was tested using nitrated and non-nitrated proteins prior incubation with sputum proteins. The elution fractions were collected, separated by SDS PAGE and stained with Coomassie blue showing the presence of one consistent band at approximately 80 kDa which was identified as lactotransferrin. All the tandem-MS spectra were revealed the presence of several hydroxytyrosine modifications; however no tyrosine nitration was identified.&lt;br /&gt;</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/16365/2/DissBernevic.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/16365/2/DissBernevic.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/16365"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2011</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-03T10:57:07Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

September 8, 2011
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen