Publikation: Algebraic Characterization of Rings of Continuous p-Adic Valued Functions
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Communications in Algebra. 2016, 44(2), pp. 486-499. ISSN 0092-7872. eISSN 1532-4125. Available under: doi: 10.1080/00927872.2014.980892
Zusammenfassung
The aim of this article is to characterize among the class of all commutative rings containing ℚ the rings C(X, ℚp) of all continuous ℚp-valued functions on a compact space X. The characterization is similar to that of M. Stone from 1940 (see [9]) for the case of ℝ-valued functions. The Characterization Theorem 4.6 is a consequence of our main result, the p-adic Representation Theorem 4.5.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Banach algebras, Normed rings, p-adic representations, p-adic spectrum, p-valuations
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
VOLKWEIS LEITE, Samuel, Alexander PRESTEL, 2016. Algebraic Characterization of Rings of Continuous p-Adic Valued Functions. In: Communications in Algebra. 2016, 44(2), pp. 486-499. ISSN 0092-7872. eISSN 1532-4125. Available under: doi: 10.1080/00927872.2014.980892BibTex
@article{VolkweisLeite2016Algeb-33408, year={2016}, doi={10.1080/00927872.2014.980892}, title={Algebraic Characterization of Rings of Continuous p-Adic Valued Functions}, number={2}, volume={44}, issn={0092-7872}, journal={Communications in Algebra}, pages={486--499}, author={Volkweis Leite, Samuel and Prestel, Alexander} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33408"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-22T14:50:59Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Volkweis Leite, Samuel</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:issued>2016</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-22T14:50:59Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33408"/> <dc:creator>Volkweis Leite, Samuel</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Prestel, Alexander</dc:creator> <dcterms:title>Algebraic Characterization of Rings of Continuous p-Adic Valued Functions</dcterms:title> <dc:contributor>Prestel, Alexander</dc:contributor> <dcterms:abstract xml:lang="eng">The aim of this article is to characterize among the class of all commutative rings containing ℚ the rings C(X, ℚp) of all continuous ℚp-valued functions on a compact space X. The characterization is similar to that of M. Stone from 1940 (see [9]) for the case of ℝ-valued functions. The Characterization Theorem 4.6 is a consequence of our main result, the p-adic Representation Theorem 4.5.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja