Functionally Enigmatic Genes in Cancer : Using TCGA Data to Map the Limitations of Annotations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Cancer is a comparatively well-studied disease, yet despite decades of intense focus, we demonstrate here using data from The Cancer Genome Atlas that a substantial number of genes implicated in cancer are relatively poorly studied. Those genes will likely be missed by any data analysis pipeline, such as enrichment analysis, that depends exclusively on annotations for understanding biological function. There is no indication that the amount of research - indicated by number of publications - is correlated with any objective metric of gene significance. Moreover, these genes are not missing at random but reflect that our information about genes is gathered in a biased manner: poorly studied genes are more likely to be primate-specific and less likely to have a Mendelian inheritance pattern, and they tend to cluster in some biological processes and not others. While this likely reflects both technological limitations as well as the fact that well-known genes tend to gather more interest from the research community, in the absence of a concerted effort to study genes in an unbiased way, many genes (and biological processes) will remain opaque.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MAERTENS, Alexandra, Vy P. TRAN, Mikhail MAERTENS, Andre KLEENSANG, Thomas H. LUECHTEFELD, Thomas HARTUNG, Channing J. PALLER, 2020. Functionally Enigmatic Genes in Cancer : Using TCGA Data to Map the Limitations of Annotations. In: Scientific Reports. Springer Nature. 2020, 10(1), 4106. eISSN 2045-2322. Available under: doi: 10.1038/s41598-020-60456-xBibTex
@article{Maertens2020Funct-51107, year={2020}, doi={10.1038/s41598-020-60456-x}, title={Functionally Enigmatic Genes in Cancer : Using TCGA Data to Map the Limitations of Annotations}, number={1}, volume={10}, journal={Scientific Reports}, author={Maertens, Alexandra and Tran, Vy P. and Maertens, Mikhail and Kleensang, Andre and Luechtefeld, Thomas H. and Hartung, Thomas and Paller, Channing J.}, note={Article Number: 4106} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51107"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51107/1/Maertens_2-lon31dx2dt4v5.pdf"/> <dcterms:abstract xml:lang="eng">Cancer is a comparatively well-studied disease, yet despite decades of intense focus, we demonstrate here using data from The Cancer Genome Atlas that a substantial number of genes implicated in cancer are relatively poorly studied. Those genes will likely be missed by any data analysis pipeline, such as enrichment analysis, that depends exclusively on annotations for understanding biological function. There is no indication that the amount of research - indicated by number of publications - is correlated with any objective metric of gene significance. Moreover, these genes are not missing at random but reflect that our information about genes is gathered in a biased manner: poorly studied genes are more likely to be primate-specific and less likely to have a Mendelian inheritance pattern, and they tend to cluster in some biological processes and not others. While this likely reflects both technological limitations as well as the fact that well-known genes tend to gather more interest from the research community, in the absence of a concerted effort to study genes in an unbiased way, many genes (and biological processes) will remain opaque.</dcterms:abstract> <dc:creator>Paller, Channing J.</dc:creator> <dc:contributor>Maertens, Mikhail</dc:contributor> <dc:creator>Kleensang, Andre</dc:creator> <dcterms:issued>2020</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-29T12:29:48Z</dcterms:available> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51107"/> <dc:contributor>Maertens, Alexandra</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Tran, Vy P.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-29T12:29:48Z</dc:date> <dcterms:title>Functionally Enigmatic Genes in Cancer : Using TCGA Data to Map the Limitations of Annotations</dcterms:title> <dc:creator>Tran, Vy P.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Luechtefeld, Thomas H.</dc:creator> <dc:creator>Maertens, Alexandra</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Luechtefeld, Thomas H.</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Maertens, Mikhail</dc:creator> <dc:contributor>Hartung, Thomas</dc:contributor> <dc:contributor>Kleensang, Andre</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Paller, Channing J.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Hartung, Thomas</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51107/1/Maertens_2-lon31dx2dt4v5.pdf"/> </rdf:Description> </rdf:RDF>