Publikation:

Stem cell microscopic image segmentation using supervised normalized cuts

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Huang, Xinyu
Li, Chen
Shirahama, Kimiaki
Grzegorzek, Marcin

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

KARAM, Lina, ed.. 2016 IEEE International Conference on Image Processing : Proceedings. Piscataway, NJ: IEEE, 2016, pp. 4140-4144. ISBN 978-1-4673-9961-6. Available under: doi: 10.1109/ICIP.2016.7533139

Zusammenfassung

A vast amount of toxicological data can be obtained from feature analysis of cells treated in vitro. However, this requires microscopic image segmentation of cells. To this end, we propose a new strategy, namely Supervised Normalized Cut Segmentation (SNCS), to segment cells that partially overlap and have a large amount of curved edges. SNCS approach is a machine learning based method, where loosely annotated images are used first to train and optimise parameters, and then the optimal parameters are inserted into a Normalized Cut segmentation process. Furthermore, we compare our segmentation results using SNCS to another four classical and two state-of-the-art methods. The overall experimental result shows the usefulness and effectiveness of our method over the six comparison methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Image Segmentation, Stem Cells, Machine Learning, Supervised Normalized Cut

Konferenz

2016 IEEE International Conference on Image Processing (ICIP), 25. Aug. 2016 - 28. Aug. 2016, Phoenix, Arizona, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HUANG, Xinyu, Chen LI, Minmin SHEN, Kimiaki SHIRAHAMA, Johanna NYFFELER, Marcel LEIST, Marcin GRZEGORZEK, Oliver DEUSSEN, 2016. Stem cell microscopic image segmentation using supervised normalized cuts. 2016 IEEE International Conference on Image Processing (ICIP). Phoenix, Arizona, USA, 25. Aug. 2016 - 28. Aug. 2016. In: KARAM, Lina, ed.. 2016 IEEE International Conference on Image Processing : Proceedings. Piscataway, NJ: IEEE, 2016, pp. 4140-4144. ISBN 978-1-4673-9961-6. Available under: doi: 10.1109/ICIP.2016.7533139
BibTex
@inproceedings{Huang2016micro-37235,
  year={2016},
  doi={10.1109/ICIP.2016.7533139},
  title={Stem cell microscopic image segmentation using supervised normalized cuts},
  isbn={978-1-4673-9961-6},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2016 IEEE International Conference on Image Processing : Proceedings},
  pages={4140--4144},
  editor={Karam, Lina},
  author={Huang, Xinyu and Li, Chen and Shen, Minmin and Shirahama, Kimiaki and Nyffeler, Johanna and Leist, Marcel and Grzegorzek, Marcin and Deussen, Oliver}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37235">
    <dcterms:abstract xml:lang="eng">A vast amount of toxicological data can be obtained from feature analysis of cells treated in vitro. However, this requires microscopic image segmentation of cells. To this end, we propose a new strategy, namely Supervised Normalized Cut Segmentation (SNCS), to segment cells that partially overlap and have a large amount of curved edges. SNCS approach is a machine learning based method, where loosely annotated images are used first to train and optimise parameters, and then the optimal parameters are inserted into a Normalized Cut segmentation process. Furthermore, we compare our segmentation results using SNCS to another four classical and two state-of-the-art methods. The overall experimental result shows the usefulness and effectiveness of our method over the six comparison methods.</dcterms:abstract>
    <dc:contributor>Li, Chen</dc:contributor>
    <dc:creator>Leist, Marcel</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Grzegorzek, Marcin</dc:creator>
    <dc:creator>Nyffeler, Johanna</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:issued>2016</dcterms:issued>
    <dc:contributor>Shen, Minmin</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:creator>Shen, Minmin</dc:creator>
    <dcterms:title>Stem cell microscopic image segmentation using supervised normalized cuts</dcterms:title>
    <dc:contributor>Nyffeler, Johanna</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37235"/>
    <dc:contributor>Huang, Xinyu</dc:contributor>
    <dc:creator>Huang, Xinyu</dc:creator>
    <dc:creator>Li, Chen</dc:creator>
    <dc:creator>Shirahama, Kimiaki</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-09T07:34:39Z</dc:date>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Shirahama, Kimiaki</dc:contributor>
    <dc:contributor>Leist, Marcel</dc:contributor>
    <dc:contributor>Grzegorzek, Marcin</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-09T07:34:39Z</dcterms:available>
    <dc:creator>Deussen, Oliver</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen