Publikation:

A Survey of Human‐Centered Evaluations in Human‐Centered Machine Learning

Lade...
Vorschaubild

Dateien

Sperrle_2-kic64u4cegeh4.pdf
Sperrle_2-kic64u4cegeh4.pdfGröße: 1.61 MBDownloads: 315

Datum

2021

Autor:innen

Guo, Grace
Borgo, Rita
Chau, Duen Horng
Endert, Alex

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computer Graphics Forum. Wiley. 2021, 40(3), pp. 543-567. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.14329

Zusammenfassung

Visual analytics systems integrate interactive visualizations and machine learning to enable expert users to solve complex analysis tasks. Applications combine techniques from various fields of research and are consequently not trivial to evaluate. The result is a lack of structure and comparability between evaluations. In this survey, we provide a comprehensive overview of evaluations in the field of human-centered machine learning. We particularly focus on human-related factors that influence trust, interpretability, and explainability. We analyze the evaluations presented in papers from top conferences and journals in information visualization and human-computer interaction to provide a systematic review of their setup and findings. From this survey, we distill design dimensions for structured evaluations, identify evaluation gaps, and derive future research opportunities.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SPERRLE, Fabian, Mennatallah EL-ASSADY, Grace GUO, Rita BORGO, Duen Horng CHAU, Alex ENDERT, Daniel A. KEIM, 2021. A Survey of Human‐Centered Evaluations in Human‐Centered Machine Learning. In: Computer Graphics Forum. Wiley. 2021, 40(3), pp. 543-567. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.14329
BibTex
@article{Sperrle2021Surve-54160,
  year={2021},
  doi={10.1111/cgf.14329},
  title={A Survey of Human‐Centered Evaluations in Human‐Centered Machine Learning},
  number={3},
  volume={40},
  issn={0167-7055},
  journal={Computer Graphics Forum},
  pages={543--567},
  author={Sperrle, Fabian and El-Assady, Mennatallah and Guo, Grace and Borgo, Rita and Chau, Duen Horng and Endert, Alex and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54160">
    <dc:creator>Sperrle, Fabian</dc:creator>
    <dcterms:title>A Survey of Human‐Centered Evaluations in Human‐Centered Machine Learning</dcterms:title>
    <dc:contributor>Sperrle, Fabian</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Endert, Alex</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-30T13:52:30Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-30T13:52:30Z</dc:date>
    <dc:contributor>Endert, Alex</dc:contributor>
    <dc:contributor>Chau, Duen Horng</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54160/1/Sperrle_2-kic64u4cegeh4.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54160"/>
    <dc:creator>Borgo, Rita</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54160/1/Sperrle_2-kic64u4cegeh4.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Borgo, Rita</dc:contributor>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dc:creator>Chau, Duen Horng</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dcterms:abstract xml:lang="eng">Visual analytics systems integrate interactive visualizations and machine learning to enable expert users to solve complex analysis tasks. Applications combine techniques from various fields of research and are consequently not trivial to evaluate. The result is a lack of structure and comparability between evaluations. In this survey, we provide a comprehensive overview of evaluations in the field of human-centered machine learning. We particularly focus on human-related factors that influence trust, interpretability, and explainability. We analyze the evaluations presented in papers from top conferences and journals in information visualization and human-computer interaction to provide a systematic review of their setup and findings. From this survey, we distill design dimensions for structured evaluations, identify evaluation gaps, and derive future research opportunities.</dcterms:abstract>
    <dcterms:issued>2021</dcterms:issued>
    <dc:creator>Guo, Grace</dc:creator>
    <dc:contributor>Guo, Grace</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen