Publikation: Subspace Nearest Neighbor Search : Problem Statement, Approaches, and Discussion
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Computing the similarity between objects is a central task for many applications in the field of information retrieval and data mining. For finding k-nearest neighbors, typically a ranking is computed based on a predetermined set of data dimensions and a distance function, constant over all possible queries. However, many high-dimensional feature spaces contain a large number of dimensions, many of which may contain noise, irrelevant, redundant, or contradicting information. More specifically, the relevance of dimensions may depend on the query object itself, and in general, different dimension sets (subspaces) may be appropriate for a query. Approaches for feature selection or -weighting typically provide a global subspace selection, which may not be suitable for all possibly queries. In this position paper, we frame a new research problem, called subspace nearest neighbor search, aiming at multiple query-dependent subspaces for nearest neighbor search. We describe relevant problem characteristics, relate to existing approaches, and outline potential research directions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BLUMENSCHEIN, Michael, Michael BEHRISCH, Ines FÄRBER, Michael SEDLMAIR, Tobias SCHRECK, Thomas SEIDL, Daniel A. KEIM, 2015. Subspace Nearest Neighbor Search : Problem Statement, Approaches, and Discussion. 8th International Conference, SISAP 2015. Glasgow, UK, 12. Okt. 2015 - 14. Okt. 2015. In: AMATO, Giuseppe, ed. and others. Similarity Search and Applications : 8th International Conference, SISAP 2015, Glasgow, UK, October 12-14, 2015 ; Proceedings. Cham [u.a.]: Springer, 2015, pp. 307-313. Lecture Notes in Computer Science. 9371. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-25086-1. Available under: doi: 10.1007/978-3-319-25087-8_29BibTex
@inproceedings{Blumenschein2015Subsp-32289, year={2015}, doi={10.1007/978-3-319-25087-8_29}, title={Subspace Nearest Neighbor Search : Problem Statement, Approaches, and Discussion}, number={9371}, isbn={978-3-319-25086-1}, issn={0302-9743}, publisher={Springer}, address={Cham [u.a.]}, series={Lecture Notes in Computer Science}, booktitle={Similarity Search and Applications : 8th International Conference, SISAP 2015, Glasgow, UK, October 12-14, 2015 ; Proceedings}, pages={307--313}, editor={Amato, Giuseppe}, author={Blumenschein, Michael and Behrisch, Michael and Färber, Ines and Sedlmair, Michael and Schreck, Tobias and Seidl, Thomas and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32289"> <dc:contributor>Seidl, Thomas</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Sedlmair, Michael</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:creator>Färber, Ines</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32289"/> <dc:contributor>Sedlmair, Michael</dc:contributor> <dc:creator>Schreck, Tobias</dc:creator> <dc:creator>Seidl, Thomas</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32289/1/Hund_0-310030.pdf"/> <dc:contributor>Behrisch, Michael</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32289/1/Hund_0-310030.pdf"/> <dcterms:abstract xml:lang="eng">Computing the similarity between objects is a central task for many applications in the field of information retrieval and data mining. For finding k-nearest neighbors, typically a ranking is computed based on a predetermined set of data dimensions and a distance function, constant over all possible queries. However, many high-dimensional feature spaces contain a large number of dimensions, many of which may contain noise, irrelevant, redundant, or contradicting information. More specifically, the relevance of dimensions may depend on the query object itself, and in general, different dimension sets (subspaces) may be appropriate for a query. Approaches for feature selection or -weighting typically provide a global subspace selection, which may not be suitable for all possibly queries. In this position paper, we frame a new research problem, called subspace nearest neighbor search, aiming at multiple query-dependent subspaces for nearest neighbor search. We describe relevant problem characteristics, relate to existing approaches, and outline potential research directions.</dcterms:abstract> <dc:creator>Behrisch, Michael</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Subspace Nearest Neighbor Search : Problem Statement, Approaches, and Discussion</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Färber, Ines</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-11-30T13:56:27Z</dcterms:available> <dcterms:issued>2015</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-11-30T13:56:27Z</dc:date> <dc:language>eng</dc:language> <dc:contributor>Blumenschein, Michael</dc:contributor> <dc:creator>Blumenschein, Michael</dc:creator> </rdf:Description> </rdf:RDF>