Publikation:

Subspace Nearest Neighbor Search : Problem Statement, Approaches, and Discussion

Lade...
Vorschaubild

Dateien

Hund_0-310030.pdf
Hund_0-310030.pdfGröße: 202.16 KBDownloads: 374

Datum

2015

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

AMATO, Giuseppe, ed. and others. Similarity Search and Applications : 8th International Conference, SISAP 2015, Glasgow, UK, October 12-14, 2015 ; Proceedings. Cham [u.a.]: Springer, 2015, pp. 307-313. Lecture Notes in Computer Science. 9371. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-25086-1. Available under: doi: 10.1007/978-3-319-25087-8_29

Zusammenfassung

Computing the similarity between objects is a central task for many applications in the field of information retrieval and data mining. For finding k-nearest neighbors, typically a ranking is computed based on a predetermined set of data dimensions and a distance function, constant over all possible queries. However, many high-dimensional feature spaces contain a large number of dimensions, many of which may contain noise, irrelevant, redundant, or contradicting information. More specifically, the relevance of dimensions may depend on the query object itself, and in general, different dimension sets (subspaces) may be appropriate for a query. Approaches for feature selection or -weighting typically provide a global subspace selection, which may not be suitable for all possibly queries. In this position paper, we frame a new research problem, called subspace nearest neighbor search, aiming at multiple query-dependent subspaces for nearest neighbor search. We describe relevant problem characteristics, relate to existing approaches, and outline potential research directions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

8th International Conference, SISAP 2015, 12. Okt. 2015 - 14. Okt. 2015, Glasgow, UK
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BLUMENSCHEIN, Michael, Michael BEHRISCH, Ines FÄRBER, Michael SEDLMAIR, Tobias SCHRECK, Thomas SEIDL, Daniel A. KEIM, 2015. Subspace Nearest Neighbor Search : Problem Statement, Approaches, and Discussion. 8th International Conference, SISAP 2015. Glasgow, UK, 12. Okt. 2015 - 14. Okt. 2015. In: AMATO, Giuseppe, ed. and others. Similarity Search and Applications : 8th International Conference, SISAP 2015, Glasgow, UK, October 12-14, 2015 ; Proceedings. Cham [u.a.]: Springer, 2015, pp. 307-313. Lecture Notes in Computer Science. 9371. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-25086-1. Available under: doi: 10.1007/978-3-319-25087-8_29
BibTex
@inproceedings{Blumenschein2015Subsp-32289,
  year={2015},
  doi={10.1007/978-3-319-25087-8_29},
  title={Subspace Nearest Neighbor Search : Problem Statement, Approaches, and Discussion},
  number={9371},
  isbn={978-3-319-25086-1},
  issn={0302-9743},
  publisher={Springer},
  address={Cham [u.a.]},
  series={Lecture Notes in Computer Science},
  booktitle={Similarity Search and Applications : 8th International Conference, SISAP 2015, Glasgow, UK, October 12-14, 2015 ; Proceedings},
  pages={307--313},
  editor={Amato, Giuseppe},
  author={Blumenschein, Michael and Behrisch, Michael and Färber, Ines and Sedlmair, Michael and Schreck, Tobias and Seidl, Thomas and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32289">
    <dc:contributor>Seidl, Thomas</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Sedlmair, Michael</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Färber, Ines</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32289"/>
    <dc:contributor>Sedlmair, Michael</dc:contributor>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:creator>Seidl, Thomas</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32289/1/Hund_0-310030.pdf"/>
    <dc:contributor>Behrisch, Michael</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32289/1/Hund_0-310030.pdf"/>
    <dcterms:abstract xml:lang="eng">Computing the similarity between objects is a central task for many applications in the field of information retrieval and data mining. For finding k-nearest neighbors, typically a ranking is computed based on a predetermined set of data dimensions and a distance function, constant over all possible queries. However, many high-dimensional feature spaces contain a large number of dimensions, many of which may contain noise, irrelevant, redundant, or contradicting information. More specifically, the relevance of dimensions may depend on the query object itself, and in general, different dimension sets (subspaces) may be appropriate for a query. Approaches for feature selection or -weighting typically provide a global subspace selection, which may not be suitable for all possibly queries. In this position paper, we frame a new research problem, called subspace nearest neighbor search, aiming at multiple query-dependent subspaces for nearest neighbor search. We describe relevant problem characteristics, relate to existing approaches, and outline potential research directions.</dcterms:abstract>
    <dc:creator>Behrisch, Michael</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Subspace Nearest Neighbor Search : Problem Statement, Approaches, and Discussion</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Färber, Ines</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-11-30T13:56:27Z</dcterms:available>
    <dcterms:issued>2015</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-11-30T13:56:27Z</dc:date>
    <dc:language>eng</dc:language>
    <dc:contributor>Blumenschein, Michael</dc:contributor>
    <dc:creator>Blumenschein, Michael</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen