Publikation:

Shock Wave Interactions and the Riemann-Flat Condition : The Geometry Behind Metric Smoothing and the Existence of Locally Inertial Frames in General Relativity

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Temple, Blake

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Archive for Rational Mechanics and Analysis. Springer. 2020, 235(3), pp. 1873-1904. ISSN 0003-9527. eISSN 1432-0673. Available under: doi: 10.1007/s00205-019-01456-8

Zusammenfassung

We prove that the essential smoothness of the gravitational metric at shock waves in GR, a PDE regularity issue for weak solutions of the Einstein equations, is determined by a geometrical condition which we introduce and name the Riemann-flat condition. The Riemann-flat condition determines whether or not the essential smoothness of the gravitational metric is two full derivatives more regular than the Riemann curvature tensor. This provides a geometric framework for the open problem as to whether regularity singularities (points where the curvature is in L but the essential smoothness of the gravitational metric is only Lipschitz continuous) can be created by shock wave interaction in GR, or whether metrics Lipschitz at shocks can always be smoothed one level to C1,1 by coordinate transformation. As a corollary of the ideas we give a proof that locally inertial frames always exist in a natural sense for shock wave metrics in spherically symmetric spacetimes, independent of whether the metric itself can be smoothed to C1,1 locally. This latter result yields an explicit procedure (analogous to Riemann normal coordinates in smooth spacetimes) for constructing locally inertial coordinates for Lipschitz metrics, and is a new regularity result for GR solutions constructed by the Glimm scheme.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690REINTJES, Moritz, Blake TEMPLE, 2020. Shock Wave Interactions and the Riemann-Flat Condition : The Geometry Behind Metric Smoothing and the Existence of Locally Inertial Frames in General Relativity. In: Archive for Rational Mechanics and Analysis. Springer. 2020, 235(3), pp. 1873-1904. ISSN 0003-9527. eISSN 1432-0673. Available under: doi: 10.1007/s00205-019-01456-8
BibTex
@article{Reintjes2020Shock-49388,
  year={2020},
  doi={10.1007/s00205-019-01456-8},
  title={Shock Wave Interactions and the Riemann-Flat Condition : The Geometry Behind Metric Smoothing and the Existence of Locally Inertial Frames in General Relativity},
  number={3},
  volume={235},
  issn={0003-9527},
  journal={Archive for Rational Mechanics and Analysis},
  pages={1873--1904},
  author={Reintjes, Moritz and Temple, Blake}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49388">
    <dc:creator>Reintjes, Moritz</dc:creator>
    <dc:contributor>Temple, Blake</dc:contributor>
    <dcterms:issued>2020</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">We prove that the essential smoothness of the gravitational metric at shock waves in GR, a PDE regularity issue for weak solutions of the Einstein equations, is determined by a geometrical condition which we introduce and name the Riemann-flat condition. The Riemann-flat condition determines whether or not the essential smoothness of the gravitational metric is two full derivatives more regular than the Riemann curvature tensor. This provides a geometric framework for the open problem as to whether regularity singularities (points where the curvature is in L&lt;sup&gt;∞&lt;/sup&gt; but the essential smoothness of the gravitational metric is only Lipschitz continuous) can be created by shock wave interaction in GR, or whether metrics Lipschitz at shocks can always be smoothed one level to C&lt;sup&gt;1,1&lt;/sup&gt; by coordinate transformation. As a corollary of the ideas we give a proof that locally inertial frames always exist in a natural sense for shock wave metrics in spherically symmetric spacetimes, independent of whether the metric itself can be smoothed to C&lt;sup&gt;1,1&lt;/sup&gt; locally. This latter result yields an explicit procedure (analogous to Riemann normal coordinates in smooth spacetimes) for constructing locally inertial coordinates for Lipschitz metrics, and is a new regularity result for GR solutions constructed by the Glimm scheme.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-05T09:22:20Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49388"/>
    <dcterms:title>Shock Wave Interactions and the Riemann-Flat Condition : The Geometry Behind Metric Smoothing and the Existence of Locally Inertial Frames in General Relativity</dcterms:title>
    <dc:creator>Temple, Blake</dc:creator>
    <dc:contributor>Reintjes, Moritz</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-05T09:22:20Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen