Publikation:

Valuation theory of exponential Hardy fields II : principal parts of germs in the Hardy field of o-minimal exponential expansions of the reals

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Kuhlmann, Franz-Viktor

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BROGLIA, Fabrizio, ed. and others. Ordered algebraic structures and related topics. Providence, Rhode Island: American Mathematical Society, 2017, pp. 227-238. Contemporary mathematics. 697. ISBN 978-1-4704-2966-9. Available under: doi: 10.1090/conm/697

Zusammenfassung

We present a general structure theorem for the Hardy field of an o-minimal expansion of the reals by restricted analytic functions and an unrestricted exponential. We proceed to analyze its residue fields with respect to arbitrary convex valuations, and deduce a power series expansion of exponential germs. We apply these results to cast "Hardy's conjecture" (see \cite[p.111]{[KS]}) in a more general framework. This paper is a follow up to \cite{[K-K2]} and is partially based on unpublished results of \cite{[K-K]}. A previous version \cite{[K-K1]} (which was dedicated to Murray A. Marshall on his 60th birthday) remained unpublished. In \cite{[W]} our structure theorem for the residue fields was rediscovered and applied to the diophantine context. Due to this revived interest, we decided to rework the preprint \cite{[K-K1]} and submit it to the Proceedings Volume.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

International Conference on Ordered Algebraic Structures and Related Topics, 12. Okt. 2015 - 16. Okt. 2015, Luminy, France
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KUHLMANN, Franz-Viktor, Salma KUHLMANN, 2017. Valuation theory of exponential Hardy fields II : principal parts of germs in the Hardy field of o-minimal exponential expansions of the reals. International Conference on Ordered Algebraic Structures and Related Topics. Luminy, France, 12. Okt. 2015 - 16. Okt. 2015. In: BROGLIA, Fabrizio, ed. and others. Ordered algebraic structures and related topics. Providence, Rhode Island: American Mathematical Society, 2017, pp. 227-238. Contemporary mathematics. 697. ISBN 978-1-4704-2966-9. Available under: doi: 10.1090/conm/697
BibTex
@inproceedings{Kuhlmann2017Valua-36928.2,
  year={2017},
  doi={10.1090/conm/697},
  title={Valuation theory of exponential Hardy fields II : principal parts of germs in the Hardy field of o-minimal exponential expansions of the reals},
  number={697},
  isbn={978-1-4704-2966-9},
  publisher={American Mathematical Society},
  address={Providence, Rhode Island},
  series={Contemporary mathematics},
  booktitle={Ordered algebraic structures and related topics},
  pages={227--238},
  editor={Broglia, Fabrizio},
  author={Kuhlmann, Franz-Viktor and Kuhlmann, Salma}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36928.2">
    <dc:contributor>Kuhlmann, Salma</dc:contributor>
    <dc:creator>Kuhlmann, Salma</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36928.2"/>
    <dcterms:issued>2017</dcterms:issued>
    <dcterms:title>Valuation theory of exponential Hardy fields II : principal parts of germs in the Hardy field of o-minimal exponential expansions of the reals</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T12:24:00Z</dcterms:available>
    <dc:creator>Kuhlmann, Franz-Viktor</dc:creator>
    <dcterms:abstract xml:lang="eng">We present a general structure theorem for the Hardy field of an o-minimal expansion of the reals by restricted analytic functions and an unrestricted exponential. We proceed to analyze its residue fields with respect to arbitrary convex valuations, and deduce a power series expansion of exponential germs. We apply these results to cast "Hardy's conjecture" (see \cite[p.111]{[KS]}) in a more general framework. This paper is a follow up to \cite{[K-K2]} and is partially based on unpublished results of \cite{[K-K]}. A previous version \cite{[K-K1]} (which was dedicated to Murray A. Marshall on his 60th birthday) remained unpublished. In \cite{[W]} our structure theorem for the residue fields was rediscovered and applied to the diophantine context. Due to this revived interest, we decided to rework the preprint \cite{[K-K1]} and submit it to the Proceedings Volume.</dcterms:abstract>
    <dc:contributor>Kuhlmann, Franz-Viktor</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T12:24:00Z</dc:date>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2018-02-06 12:19:26
2017-01-24 13:31:08
* Ausgewählte Version