Publikation: Valuation theory of exponential Hardy fields II : principal parts of germs in the Hardy field of o-minimal exponential expansions of the reals
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a general structure theorem for the Hardy field of an o-minimal expansion of the reals by restricted analytic functions and an unrestricted exponential. We proceed to analyze its residue fields with respect to arbitrary convex valuations, and deduce a power series expansion of exponential germs. We apply these results to cast "Hardy's conjecture" (see \cite[p.111]{[KS]}) in a more general framework. This paper is a follow up to \cite{[K-K2]} and is partially based on unpublished results of \cite{[K-K]}. A previous version \cite{[K-K1]} (which was dedicated to Murray A. Marshall on his 60th birthday) remained unpublished. In \cite{[W]} our structure theorem for the residue fields was rediscovered and applied to the diophantine context. Due to this revived interest, we decided to rework the preprint \cite{[K-K1]} and submit it to the Proceedings Volume.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KUHLMANN, Franz-Viktor, Salma KUHLMANN, 2017. Valuation theory of exponential Hardy fields II : principal parts of germs in the Hardy field of o-minimal exponential expansions of the reals. International Conference on Ordered Algebraic Structures and Related Topics. Luminy, France, 12. Okt. 2015 - 16. Okt. 2015. In: BROGLIA, Fabrizio, ed. and others. Ordered algebraic structures and related topics. Providence, Rhode Island: American Mathematical Society, 2017, pp. 227-238. Contemporary mathematics. 697. ISBN 978-1-4704-2966-9. Available under: doi: 10.1090/conm/697BibTex
@inproceedings{Kuhlmann2017Valua-36928.2, year={2017}, doi={10.1090/conm/697}, title={Valuation theory of exponential Hardy fields II : principal parts of germs in the Hardy field of o-minimal exponential expansions of the reals}, number={697}, isbn={978-1-4704-2966-9}, publisher={American Mathematical Society}, address={Providence, Rhode Island}, series={Contemporary mathematics}, booktitle={Ordered algebraic structures and related topics}, pages={227--238}, editor={Broglia, Fabrizio}, author={Kuhlmann, Franz-Viktor and Kuhlmann, Salma} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36928.2"> <dc:contributor>Kuhlmann, Salma</dc:contributor> <dc:creator>Kuhlmann, Salma</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36928.2"/> <dcterms:issued>2017</dcterms:issued> <dcterms:title>Valuation theory of exponential Hardy fields II : principal parts of germs in the Hardy field of o-minimal exponential expansions of the reals</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T12:24:00Z</dcterms:available> <dc:creator>Kuhlmann, Franz-Viktor</dc:creator> <dcterms:abstract xml:lang="eng">We present a general structure theorem for the Hardy field of an o-minimal expansion of the reals by restricted analytic functions and an unrestricted exponential. We proceed to analyze its residue fields with respect to arbitrary convex valuations, and deduce a power series expansion of exponential germs. We apply these results to cast "Hardy's conjecture" (see \cite[p.111]{[KS]}) in a more general framework. This paper is a follow up to \cite{[K-K2]} and is partially based on unpublished results of \cite{[K-K]}. A previous version \cite{[K-K1]} (which was dedicated to Murray A. Marshall on his 60th birthday) remained unpublished. In \cite{[W]} our structure theorem for the residue fields was rediscovered and applied to the diophantine context. Due to this revived interest, we decided to rework the preprint \cite{[K-K1]} and submit it to the Proceedings Volume.</dcterms:abstract> <dc:contributor>Kuhlmann, Franz-Viktor</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T12:24:00Z</dc:date> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>