Publikation:

A Quality Metric for Visualization of Clusters in Graphs

Lade...
Vorschaubild

Dateien

Meidiana_2-iyjy8fzxa1yd8.PDF
Meidiana_2-iyjy8fzxa1yd8.PDFGröße: 1.49 MBDownloads: 35

Datum

2019

Autor:innen

Meidiana, Amyra
Hong, Seok-Hee
Eades, Peter

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ARCHAMBAULT, Daniel, ed., Csaba D. TÓTH, ed.. Graph Drawing and Network Visualization : 27th International Symposium, GD 2019, Proceedings. Cham: Springer, 2019, pp. 125-138. Lecture Notes in Computer Science. 11904. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-35801-3. Available under: doi: 10.1007/978-3-030-35802-0_10

Zusammenfassung

Traditionally, graph quality metrics focus on readability, but recent studies show the need for metrics which are more specific to the discovery of patterns in graphs. Cluster analysis is a popular task within graph analysis, yet there is no metric yet explicitly quantifying how well a drawing of a graph represents its cluster structure. We define a clustering quality metric measuring how well a node-link drawing of a graph represents the clusters contained in the graph. Experiments with deforming graph drawings verify that our metric effectively captures variations in the visual cluster quality of graph drawings. We then use our metric to examine how well different graph drawing algorithms visualize cluster structures in various graphs; the results confirm that some algorithms which have been specifically designed to show cluster structures perform better than other algorithms.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Graph Drawing and Network Visualization : 27th International Symposium, GD 2019, 17. Sept. 2019 - 20. Sept. 2019, Prague, Czech Republic
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MEIDIANA, Amyra, Seok-Hee HONG, Peter EADES, Daniel A. KEIM, 2019. A Quality Metric for Visualization of Clusters in Graphs. Graph Drawing and Network Visualization : 27th International Symposium, GD 2019. Prague, Czech Republic, 17. Sept. 2019 - 20. Sept. 2019. In: ARCHAMBAULT, Daniel, ed., Csaba D. TÓTH, ed.. Graph Drawing and Network Visualization : 27th International Symposium, GD 2019, Proceedings. Cham: Springer, 2019, pp. 125-138. Lecture Notes in Computer Science. 11904. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-35801-3. Available under: doi: 10.1007/978-3-030-35802-0_10
BibTex
@inproceedings{Meidiana2019Quali-66540,
  year={2019},
  doi={10.1007/978-3-030-35802-0_10},
  title={A Quality Metric for Visualization of Clusters in Graphs},
  number={11904},
  isbn={978-3-030-35801-3},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Graph Drawing and Network Visualization : 27th International Symposium, GD 2019, Proceedings},
  pages={125--138},
  editor={Archambault, Daniel and Tóth, Csaba D.},
  author={Meidiana, Amyra and Hong, Seok-Hee and Eades, Peter and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66540">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-05T07:50:15Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Hong, Seok-Hee</dc:contributor>
    <dc:creator>Meidiana, Amyra</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract>Traditionally, graph quality metrics focus on readability, but recent studies show the need for metrics which are more specific to the discovery of patterns in graphs. Cluster analysis is a popular task within graph analysis, yet there is no metric yet explicitly quantifying how well a drawing of a graph represents its cluster structure.
We define a clustering quality metric measuring how well a node-link drawing of a graph represents the clusters contained in the graph. Experiments with deforming graph drawings verify that our metric effectively captures variations in the visual cluster quality of graph drawings. We then use our metric to examine how well different graph drawing algorithms visualize cluster structures in various graphs; the results confirm that some algorithms which have been specifically designed to show cluster structures perform better than other algorithms.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66540/1/Meidiana_2-iyjy8fzxa1yd8.PDF"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66540"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Eades, Peter</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-05T07:50:15Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66540/1/Meidiana_2-iyjy8fzxa1yd8.PDF"/>
    <dcterms:title>A Quality Metric for Visualization of Clusters in Graphs</dcterms:title>
    <dc:creator>Hong, Seok-Hee</dc:creator>
    <dc:creator>Eades, Peter</dc:creator>
    <dcterms:issued>2019</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Meidiana, Amyra</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen