Publikation:

Thermally Limited Force Microscopy on Optically Trapped Single Metallic Nanoparticles

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Schnoering, Gabriel
Rosales-Cabara, Yoseline
Canaguier-Durand, Antoine
Genet, Cyriaque

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physical Review Applied. 2019, 11(3), 034023. eISSN 2331-7019. Available under: doi: 10.1103/PhysRevApplied.11.034023

Zusammenfassung

We propose and evaluate a new type of optical force microscope based on a standing-wave optical trap. Our microscope, calibrated in situ and operating in a dynamic mode, is able to trap, without heating, a single metallic nanoparticle of 150 nm that acts as a highly sensitive probe for external radiation pressure. An Allan-deviation-based stability analysis of the setup yields an optimal 0.1-Hz measurement bandwidth over which the microscope is thermally limited. Over this bandwidth, and with a genuine sine-wave external drive, we demonstrate an optical force resolution down to 3 fN in water at room temperature with a dynamical range for force detection that covers almost 2 orders of magnitude. This resolution is reached in both the confined regime and the freely diffusing regime of the optical trap. In the latter, we measure induced displacements of 10−11 m on the trapped nanoparticle spatially confined within less than 25 nm along the optical axis.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHNOERING, Gabriel, Yoseline ROSALES-CABARA, Hugo WENDEHENNE, Antoine CANAGUIER-DURAND, Cyriaque GENET, 2019. Thermally Limited Force Microscopy on Optically Trapped Single Metallic Nanoparticles. In: Physical Review Applied. 2019, 11(3), 034023. eISSN 2331-7019. Available under: doi: 10.1103/PhysRevApplied.11.034023
BibTex
@article{Schnoering2019Therm-45607,
  year={2019},
  doi={10.1103/PhysRevApplied.11.034023},
  title={Thermally Limited Force Microscopy on Optically Trapped Single Metallic Nanoparticles},
  number={3},
  volume={11},
  journal={Physical Review Applied},
  author={Schnoering, Gabriel and Rosales-Cabara, Yoseline and Wendehenne, Hugo and Canaguier-Durand, Antoine and Genet, Cyriaque},
  note={Article Number: 034023}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45607">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45607"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-09T12:24:25Z</dc:date>
    <dcterms:title>Thermally Limited Force Microscopy on Optically Trapped Single Metallic Nanoparticles</dcterms:title>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-09T12:24:25Z</dcterms:available>
    <dc:creator>Rosales-Cabara, Yoseline</dc:creator>
    <dc:contributor>Wendehenne, Hugo</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Canaguier-Durand, Antoine</dc:creator>
    <dcterms:issued>2019</dcterms:issued>
    <dc:contributor>Schnoering, Gabriel</dc:contributor>
    <dc:contributor>Genet, Cyriaque</dc:contributor>
    <dc:creator>Wendehenne, Hugo</dc:creator>
    <dc:contributor>Rosales-Cabara, Yoseline</dc:contributor>
    <dc:creator>Genet, Cyriaque</dc:creator>
    <dc:creator>Schnoering, Gabriel</dc:creator>
    <dcterms:abstract xml:lang="eng">We propose and evaluate a new type of optical force microscope based on a standing-wave optical trap. Our microscope, calibrated in situ and operating in a dynamic mode, is able to trap, without heating, a single metallic nanoparticle of 150 nm that acts as a highly sensitive probe for external radiation pressure. An Allan-deviation-based stability analysis of the setup yields an optimal 0.1-Hz measurement bandwidth over which the microscope is thermally limited. Over this bandwidth, and with a genuine sine-wave external drive, we demonstrate an optical force resolution down to 3 fN in water at room temperature with a dynamical range for force detection that covers almost 2 orders of magnitude. This resolution is reached in both the confined regime and the freely diffusing regime of the optical trap. In the latter, we measure induced displacements of 10&lt;sup&gt;−11&lt;/sup&gt; m on the trapped nanoparticle spatially confined within less than 25 nm along the optical axis.</dcterms:abstract>
    <dc:contributor>Canaguier-Durand, Antoine</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen