Publikation: Thermally Limited Force Microscopy on Optically Trapped Single Metallic Nanoparticles
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We propose and evaluate a new type of optical force microscope based on a standing-wave optical trap. Our microscope, calibrated in situ and operating in a dynamic mode, is able to trap, without heating, a single metallic nanoparticle of 150 nm that acts as a highly sensitive probe for external radiation pressure. An Allan-deviation-based stability analysis of the setup yields an optimal 0.1-Hz measurement bandwidth over which the microscope is thermally limited. Over this bandwidth, and with a genuine sine-wave external drive, we demonstrate an optical force resolution down to 3 fN in water at room temperature with a dynamical range for force detection that covers almost 2 orders of magnitude. This resolution is reached in both the confined regime and the freely diffusing regime of the optical trap. In the latter, we measure induced displacements of 10−11 m on the trapped nanoparticle spatially confined within less than 25 nm along the optical axis.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHNOERING, Gabriel, Yoseline ROSALES-CABARA, Hugo WENDEHENNE, Antoine CANAGUIER-DURAND, Cyriaque GENET, 2019. Thermally Limited Force Microscopy on Optically Trapped Single Metallic Nanoparticles. In: Physical Review Applied. 2019, 11(3), 034023. eISSN 2331-7019. Available under: doi: 10.1103/PhysRevApplied.11.034023BibTex
@article{Schnoering2019Therm-45607, year={2019}, doi={10.1103/PhysRevApplied.11.034023}, title={Thermally Limited Force Microscopy on Optically Trapped Single Metallic Nanoparticles}, number={3}, volume={11}, journal={Physical Review Applied}, author={Schnoering, Gabriel and Rosales-Cabara, Yoseline and Wendehenne, Hugo and Canaguier-Durand, Antoine and Genet, Cyriaque}, note={Article Number: 034023} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45607"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45607"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-09T12:24:25Z</dc:date> <dcterms:title>Thermally Limited Force Microscopy on Optically Trapped Single Metallic Nanoparticles</dcterms:title> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-09T12:24:25Z</dcterms:available> <dc:creator>Rosales-Cabara, Yoseline</dc:creator> <dc:contributor>Wendehenne, Hugo</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Canaguier-Durand, Antoine</dc:creator> <dcterms:issued>2019</dcterms:issued> <dc:contributor>Schnoering, Gabriel</dc:contributor> <dc:contributor>Genet, Cyriaque</dc:contributor> <dc:creator>Wendehenne, Hugo</dc:creator> <dc:contributor>Rosales-Cabara, Yoseline</dc:contributor> <dc:creator>Genet, Cyriaque</dc:creator> <dc:creator>Schnoering, Gabriel</dc:creator> <dcterms:abstract xml:lang="eng">We propose and evaluate a new type of optical force microscope based on a standing-wave optical trap. Our microscope, calibrated in situ and operating in a dynamic mode, is able to trap, without heating, a single metallic nanoparticle of 150 nm that acts as a highly sensitive probe for external radiation pressure. An Allan-deviation-based stability analysis of the setup yields an optimal 0.1-Hz measurement bandwidth over which the microscope is thermally limited. Over this bandwidth, and with a genuine sine-wave external drive, we demonstrate an optical force resolution down to 3 fN in water at room temperature with a dynamical range for force detection that covers almost 2 orders of magnitude. This resolution is reached in both the confined regime and the freely diffusing regime of the optical trap. In the latter, we measure induced displacements of 10<sup>−11</sup> m on the trapped nanoparticle spatially confined within less than 25 nm along the optical axis.</dcterms:abstract> <dc:contributor>Canaguier-Durand, Antoine</dc:contributor> </rdf:Description> </rdf:RDF>