Publikation: Speeding-up the decision making of a learning agent using an ion trap quantum processor
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Wereport a proof-of-principle experimental demonstration of the quantum speed-up for learning agents utilizing a small-scale quantum information processor based on radiofrequency-driven trapped ions. The decision-making process of a quantum learning agent within the projective simulation paradigm for machine learning is implemented in a system of two qubits. The latter are realized using hyperfine states of two frequency-addressed atomic ions exposed to a static magnetic field gradient.Weshow that the deliberation time of this quantum learning agent is quadratically improved with respect to comparable classical learning agents. The performance of this quantumenhanced learning agent highlights the potential of scalable quantum processors taking advantage of machine learning.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SRIARUNOTHAI, Theeraphot, Sabine WÖLK, Gouri Shankar GIRI, Nicolai FRIIS, Vedran DUNJKO, Hans J. BRIEGEL, Christof WUNDERLICH, 2019. Speeding-up the decision making of a learning agent using an ion trap quantum processor. In: Quantum Science and Technology. 2019, 4(1), 015014. eISSN 2058-9565. Available under: doi: 10.1088/2058-9565/aaef5eBibTex
@article{Sriarunothai2019-01-01Speed-44516, year={2019}, doi={10.1088/2058-9565/aaef5e}, title={Speeding-up the decision making of a learning agent using an ion trap quantum processor}, number={1}, volume={4}, journal={Quantum Science and Technology}, author={Sriarunothai, Theeraphot and Wölk, Sabine and Giri, Gouri Shankar and Friis, Nicolai and Dunjko, Vedran and Briegel, Hans J. and Wunderlich, Christof}, note={Article Number: 015014} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44516"> <dc:contributor>Wölk, Sabine</dc:contributor> <dc:contributor>Friis, Nicolai</dc:contributor> <dc:contributor>Dunjko, Vedran</dc:contributor> <dc:contributor>Briegel, Hans J.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dc:creator>Friis, Nicolai</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Sriarunothai, Theeraphot</dc:contributor> <dc:contributor>Giri, Gouri Shankar</dc:contributor> <dcterms:issued>2019-01-01</dcterms:issued> <dc:creator>Briegel, Hans J.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44516"/> <dc:creator>Wölk, Sabine</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/3.0/"/> <dcterms:title>Speeding-up the decision making of a learning agent using an ion trap quantum processor</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-10T14:15:59Z</dcterms:available> <dc:language>eng</dc:language> <dc:creator>Giri, Gouri Shankar</dc:creator> <dc:creator>Dunjko, Vedran</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44516/1/Sriarunothai_2-i3672ywii1wv5.pdf"/> <dc:creator>Wunderlich, Christof</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44516/1/Sriarunothai_2-i3672ywii1wv5.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-10T14:15:59Z</dc:date> <dcterms:abstract xml:lang="eng">Wereport a proof-of-principle experimental demonstration of the quantum speed-up for learning agents utilizing a small-scale quantum information processor based on radiofrequency-driven trapped ions. The decision-making process of a quantum learning agent within the projective simulation paradigm for machine learning is implemented in a system of two qubits. The latter are realized using hyperfine states of two frequency-addressed atomic ions exposed to a static magnetic field gradient.Weshow that the deliberation time of this quantum learning agent is quadratically improved with respect to comparable classical learning agents. The performance of this quantumenhanced learning agent highlights the potential of scalable quantum processors taking advantage of machine learning.</dcterms:abstract> <dc:rights>Attribution 3.0 Unported</dc:rights> <dc:creator>Sriarunothai, Theeraphot</dc:creator> <dc:contributor>Wunderlich, Christof</dc:contributor> </rdf:Description> </rdf:RDF>