Publikation: Using Projections to Visually Cluster High-Dimensional Data
Lade...
Dateien
Datum
2003
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Computing in science and engineering. 2003, 5(2), pp. 14-25. Available under: doi: 10.1109/MCISE.2003.1182958
Zusammenfassung
The High-Dimensional Eye system proves that a tight integration of advanced clustering algorithms and state-of-the-art visualization techniques can help us better understand and effectively guide the clustering process, and thus significantly improve the clustering results.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
HINNEBURG, Alexander, Daniel A. KEIM, Markus WAWRYNIUK, 2003. Using Projections to Visually Cluster High-Dimensional Data. In: Computing in science and engineering. 2003, 5(2), pp. 14-25. Available under: doi: 10.1109/MCISE.2003.1182958BibTex
@article{Hinneburg2003Using-5642, year={2003}, doi={10.1109/MCISE.2003.1182958}, title={Using Projections to Visually Cluster High-Dimensional Data}, number={2}, volume={5}, journal={Computing in science and engineering}, pages={14--25}, author={Hinneburg, Alexander and Keim, Daniel A. and Wawryniuk, Markus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5642"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5642/1/HDEyePublishedVersion.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:creator>Wawryniuk, Markus</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:26Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:26Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:issued>2003</dcterms:issued> <dc:contributor>Hinneburg, Alexander</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5642/1/HDEyePublishedVersion.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">The High-Dimensional Eye system proves that a tight integration of advanced clustering algorithms and state-of-the-art visualization techniques can help us better understand and effectively guide the clustering process, and thus significantly improve the clustering results.</dcterms:abstract> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Hinneburg, Alexander</dc:creator> <dc:format>application/pdf</dc:format> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5642"/> <dc:contributor>Wawryniuk, Markus</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>First publ. in: Computing in science and engineering 5 (2003), 2, pp. 14-25</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Using Projections to Visually Cluster High-Dimensional Data</dcterms:title> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja