Publikation:

Clustering and Analyzing Ensembles of Residue Interaction Networks from Molecular Dynamics Simulations

Lade...
Vorschaubild

Dateien

Horni_2-ueovpqsu0u3d1.pdf
Horni_2-ueovpqsu0u3d1.pdfGröße: 936.78 KBDownloads: 0

Datum

2025

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): CRC 969
Deutsche Forschungsgemeinschaft (DFG): INST 35/1134-1 FUGG
Deutsche Forschungsgemeinschaft (DFG): INST 37/935-1 FUGG

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Chemical Information and Modeling. ACS Publications. 2025, 65(20), S. 11203-11214. ISSN 1549-9596. eISSN 1549-960X. Verfügbar unter: doi: 10.1021/acs.jcim.5c01298

Zusammenfassung

Network methods and molecular dynamics (MD) simulations have become essential tools for studying protein dynamics. However, applying network methods to MD simulations of flexible proteins is a major challenge, since the high conformational heterogeneity in such multistate systems can lead to vastly different network topologies across an ensemble. To address this, tools that can disentangle conformational ensembles on a network level are needed. Here, we propose a graph-based clustering framework that provides state-specific insight into the residue interactions of flexible proteins. The framework hinges on using the set of graph-theoretic closeness centralities of all amino acid residues as a structural fingerprint and input for unsupervised machine learning algorithms to perform dimensionality reduction and clustering. The resulting clusters─states with shared network topology─are subsequently fed back into the upstream workflow and characterized at every representation level. Based on the example of FAT10─a protein with intrinsically disordered regions and two folded domains connected by a flexible linker─we demonstrate how this approach can be used to understand the protein’s residue interactions on different, interconnected levels and to characterize its most populated states. Due to the modularity of the framework, it can be easily adapted, which makes it a suitable method to support network-based analyses of MD simulations for a wide variety of proteins.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
540 Chemie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FRANKE, Leon, Christine PETER, 2025. Clustering and Analyzing Ensembles of Residue Interaction Networks from Molecular Dynamics Simulations. In: Journal of Chemical Information and Modeling. ACS Publications. 2025, 65(20), S. 11203-11214. ISSN 1549-9596. eISSN 1549-960X. Verfügbar unter: doi: 10.1021/acs.jcim.5c01298
BibTex
@article{Franke2025-10-27Clust-74770,
  title={Clustering and Analyzing Ensembles of Residue Interaction Networks from Molecular Dynamics Simulations},
  year={2025},
  doi={10.1021/acs.jcim.5c01298},
  number={20},
  volume={65},
  issn={1549-9596},
  journal={Journal of Chemical Information and Modeling},
  pages={11203--11214},
  author={Franke, Leon and Peter, Christine}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74770">
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74770/1/Horni_2-ueovpqsu0u3d1.pdf"/>
    <dcterms:issued>2025-10-27</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-10T07:05:37Z</dc:date>
    <dc:creator>Franke, Leon</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:abstract>Network methods and molecular dynamics (MD) simulations have become essential tools for studying protein dynamics. However, applying network methods to MD simulations of flexible proteins is a major challenge, since the high conformational heterogeneity in such multistate systems can lead to vastly different network topologies across an ensemble. To address this, tools that can disentangle conformational ensembles on a network level are needed. Here, we propose a graph-based clustering framework that provides state-specific insight into the residue interactions of flexible proteins. The framework hinges on using the set of graph-theoretic closeness centralities of all amino acid residues as a structural fingerprint and input for unsupervised machine learning algorithms to perform dimensionality reduction and clustering. The resulting clusters─states with shared network topology─are subsequently fed back into the upstream workflow and characterized at every representation level. Based on the example of FAT10─a protein with intrinsically disordered regions and two folded domains connected by a flexible linker─we demonstrate how this approach can be used to understand the protein’s residue interactions on different, interconnected levels and to characterize its most populated states. Due to the modularity of the framework, it can be easily adapted, which makes it a suitable method to support network-based analyses of MD simulations for a wide variety of proteins.</dcterms:abstract>
    <dc:contributor>Franke, Leon</dc:contributor>
    <dcterms:title>Clustering and Analyzing Ensembles of Residue Interaction Networks from Molecular Dynamics Simulations</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74770"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:creator>Peter, Christine</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Peter, Christine</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74770/1/Horni_2-ueovpqsu0u3d1.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-10T07:05:37Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen