A note on ℵα-saturated o-minimal expansions of real closed fields
A note on ℵα-saturated o-minimal expansions of real closed fields
No Thumbnail Available
Files
There are no files associated with this item.
Date
2016
Authors
D'Aquino, Paola
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
In Copyright
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Algebra and Logic ; 54 (2016), 6. - pp. 502-506. - ISSN 0002-5232. - eISSN 1573-8302
Abstract
We give necessary and sufficient conditions for a polynomially bounded o-minimal expansion of a real closed field (in a language of arbitrary cardinality) to be ℵα-saturated. The conditions are in terms of the value group, residue field, and pseudo- Cauchy sequences of the natural valuation on the real closed field. This is achieved by an analysis of types, leading to the trichotomy. Our characterization provides a construction method for saturated models, using fields of generalized power series.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
D'AQUINO, Paola, Salma KUHLMANN, 2016. A note on ℵα-saturated o-minimal expansions of real closed fields. In: Algebra and Logic. 54(6), pp. 502-506. ISSN 0002-5232. eISSN 1573-8302. Available under: doi: 10.1007/s10469-016-9369-6BibTex
@article{DAquino2016satur-33138.2, year={2016}, doi={10.1007/s10469-016-9369-6}, title={A note on ℵ<sub>α</sub>-saturated o-minimal expansions of real closed fields}, number={6}, volume={54}, issn={0002-5232}, journal={Algebra and Logic}, pages={502--506}, author={D'Aquino, Paola and Kuhlmann, Salma} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33138.2"> <dcterms:title>A note on ℵ<sub>α</sub>-saturated o-minimal expansions of real closed fields</dcterms:title> <dc:contributor>Kuhlmann, Salma</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-18T11:08:43Z</dc:date> <dcterms:issued>2016</dcterms:issued> <dc:creator>D'Aquino, Paola</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33138.2"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We give necessary and sufficient conditions for a polynomially bounded o-minimal expansion of a real closed field (in a language of arbitrary cardinality) to be ℵ<sub>α</sub>-saturated. The conditions are in terms of the value group, residue field, and pseudo- Cauchy sequences of the natural valuation on the real closed field. This is achieved by an analysis of types, leading to the trichotomy. Our characterization provides a construction method for saturated models, using fields of generalized power series.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dc:creator>Kuhlmann, Salma</dc:creator> <dc:contributor>D'Aquino, Paola</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-18T11:08:43Z</dcterms:available> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Unknown