Publikation: Forecasting Euro Area Macroeconomic Variables with Bayesian Adaptive Elastic Net
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
I use the adaptive elastic net in a Bayesian framework and test its forecasting performance against lasso, adaptive lasso and elastic net (all used in a Bayesian framework) in a series of simulations, as well as in an empirical exercise for macroeconomic Euro area data. The results suggest that elastic net is the best model among the four Bayesian methods considered. Adaptive lasso, on the other hand, shows the worst forecasting performance. Lasso is generally better then adaptive lasso, but worse than adaptive elastic net. The differences in the performance of these models become especially large when the number of regressors grows considerably relative to the number of available observations. The results point to the fact that the ridge regression component in the elastic net is responsible for its improvement in forecasting performance over lasso. The adaptive shrinkage in some of the models does not seem to play a major role, and may even lead to a deterioration of the performance.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STANKIEWICZ, Sandra, 2015. Forecasting Euro Area Macroeconomic Variables with Bayesian Adaptive Elastic NetBibTex
@techreport{Stankiewicz2015Forec-32745, year={2015}, series={Working Paper Series / Department of Economics}, title={Forecasting Euro Area Macroeconomic Variables with Bayesian Adaptive Elastic Net}, number={2015-12}, author={Stankiewicz, Sandra} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32745"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-28T09:45:21Z</dcterms:available> <dc:contributor>Stankiewicz, Sandra</dc:contributor> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32745/3/Stankiewicz_0-319666.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-28T09:45:21Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32745"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32745/3/Stankiewicz_0-319666.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2015</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Forecasting Euro Area Macroeconomic Variables with Bayesian Adaptive Elastic Net</dcterms:title> <dc:creator>Stankiewicz, Sandra</dc:creator> <dcterms:abstract xml:lang="eng">I use the adaptive elastic net in a Bayesian framework and test its forecasting performance against lasso, adaptive lasso and elastic net (all used in a Bayesian framework) in a series of simulations, as well as in an empirical exercise for macroeconomic Euro area data. The results suggest that elastic net is the best model among the four Bayesian methods considered. Adaptive lasso, on the other hand, shows the worst forecasting performance. Lasso is generally better then adaptive lasso, but worse than adaptive elastic net. The differences in the performance of these models become especially large when the number of regressors grows considerably relative to the number of available observations. The results point to the fact that the ridge regression component in the elastic net is responsible for its improvement in forecasting performance over lasso. The adaptive shrinkage in some of the models does not seem to play a major role, and may even lead to a deterioration of the performance.</dcterms:abstract> </rdf:Description> </rdf:RDF>