Publikation:

Forecasting Euro Area Macroeconomic Variables with Bayesian Adaptive Elastic Net

Lade...
Vorschaubild

Dateien

Stankiewicz_0-319666.pdf
Stankiewicz_0-319666.pdfGröße: 699.71 KBDownloads: 224

Datum

2015

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

I use the adaptive elastic net in a Bayesian framework and test its forecasting performance against lasso, adaptive lasso and elastic net (all used in a Bayesian framework) in a series of simulations, as well as in an empirical exercise for macroeconomic Euro area data. The results suggest that elastic net is the best model among the four Bayesian methods considered. Adaptive lasso, on the other hand, shows the worst forecasting performance. Lasso is generally better then adaptive lasso, but worse than adaptive elastic net. The differences in the performance of these models become especially large when the number of regressors grows considerably relative to the number of available observations. The results point to the fact that the ridge regression component in the elastic net is responsible for its improvement in forecasting performance over lasso. The adaptive shrinkage in some of the models does not seem to play a major role, and may even lead to a deterioration of the performance.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

Elastic net, Lasso, Bayesian, Forecasting

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690STANKIEWICZ, Sandra, 2015. Forecasting Euro Area Macroeconomic Variables with Bayesian Adaptive Elastic Net
BibTex
@techreport{Stankiewicz2015Forec-32745,
  year={2015},
  series={Working Paper Series / Department of Economics},
  title={Forecasting Euro Area Macroeconomic Variables with Bayesian Adaptive Elastic Net},
  number={2015-12},
  author={Stankiewicz, Sandra}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32745">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-28T09:45:21Z</dcterms:available>
    <dc:contributor>Stankiewicz, Sandra</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32745/3/Stankiewicz_0-319666.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-28T09:45:21Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32745"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32745/3/Stankiewicz_0-319666.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2015</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Forecasting Euro Area Macroeconomic Variables with Bayesian Adaptive Elastic Net</dcterms:title>
    <dc:creator>Stankiewicz, Sandra</dc:creator>
    <dcterms:abstract xml:lang="eng">I use the adaptive elastic net in a Bayesian framework and test its forecasting performance against lasso, adaptive lasso and elastic net (all used in a Bayesian framework) in a series of simulations, as well as in an empirical exercise for macroeconomic Euro area data. The results suggest that elastic net is the best model among the four Bayesian methods considered. Adaptive lasso, on the other hand, shows the worst forecasting performance. Lasso is generally better then adaptive lasso, but worse than adaptive elastic net. The differences in the performance of these models become especially large when the number of regressors grows considerably relative to the number of available observations. The results point to the fact that the ridge regression component in the elastic net is responsible for its improvement in forecasting performance over lasso. The adaptive shrinkage in some of the models does not seem to play a major role, and may even lead to a deterioration of the performance.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen