Probabilistic hazard assessment for skin sensitization potency by dose-response modeling using feature elimination instead of quantitative structure-activity relationships

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Autor:innen
Luechtefeld, Thomas
Maertens, Alexandra
McKim, James M.
Kleensang, Andre
Sá-Rocha, Vanessa
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Applied Toxicology. 2015, 35(11), pp. 1361-1371. ISSN 0260-437X. eISSN 1099-1263. Available under: doi: 10.1002/jat.3172
Zusammenfassung

Supervised learning methods promise to improve integrated testing strategies (ITS), but must be adjusted to handle high dimensionality and dose-response data. ITS approaches are currently fueled by the increasing mechanistic understanding of adverse outcome pathways (AOP) and the development of tests reflecting these mechanisms. Simple approaches to combine skin sensitization data sets, such as weight of evidence, fail due to problems in information redundancy and high dimensionality. The problem is further amplified when potency information (dose/response) of hazards would be estimated. Skin sensitization currently serves as the foster child for AOP and ITS development, as legislative pressures combined with a very good mechanistic understanding of contact dermatitis have led to test development and relatively large high-quality data sets. We curated such a data set and combined a recursive variable selection algorithm to evaluate the information available through in silico, in chemico and in vitro assays. Chemical similarity alone could not cluster chemicals' potency, and in vitro models consistently ranked high in recursive feature elimination. This allows reducing the number of tests included in an ITS. Next, we analyzed with a hidden Markov model that takes advantage of an intrinsic inter-relationship among the local lymph node assay classes, i.e. the monotonous connection between local lymph node assay and dose. The dose-informed random forest/hidden Markov model was superior to the dose-naive random forest model on all data sets. Although balanced accuracy improvement may seem small, this obscures the actual improvement in misclassifications as the dose-informed hidden Markov model strongly reduced " false-negatives" (i.e. extreme sensitizers as non-sensitizer) on all data sets.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
LLNA, in vitro, skin sensitization, integrated testing strategy, machine learning, hidden Markov model, QSAR, feature selection
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690LUECHTEFELD, Thomas, Alexandra MAERTENS, James M. MCKIM, Thomas HARTUNG, Andre KLEENSANG, Vanessa SÁ-ROCHA, 2015. Probabilistic hazard assessment for skin sensitization potency by dose-response modeling using feature elimination instead of quantitative structure-activity relationships. In: Journal of Applied Toxicology. 2015, 35(11), pp. 1361-1371. ISSN 0260-437X. eISSN 1099-1263. Available under: doi: 10.1002/jat.3172
BibTex
@article{Luechtefeld2015Proba-32748,
  year={2015},
  doi={10.1002/jat.3172},
  title={Probabilistic hazard assessment for skin sensitization potency by dose-response modeling using feature elimination instead of quantitative structure-activity relationships},
  number={11},
  volume={35},
  issn={0260-437X},
  journal={Journal of Applied Toxicology},
  pages={1361--1371},
  author={Luechtefeld, Thomas and Maertens, Alexandra and McKim, James M. and Hartung, Thomas and Kleensang, Andre and Sá-Rocha, Vanessa}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32748">
    <dc:creator>McKim, James M.</dc:creator>
    <dc:creator>Kleensang, Andre</dc:creator>
    <dc:creator>Sá-Rocha, Vanessa</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Maertens, Alexandra</dc:creator>
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32748"/>
    <dc:contributor>Luechtefeld, Thomas</dc:contributor>
    <dc:contributor>McKim, James M.</dc:contributor>
    <dc:contributor>Maertens, Alexandra</dc:contributor>
    <dcterms:abstract xml:lang="eng">Supervised learning methods promise to improve integrated testing strategies (ITS), but must be adjusted to handle high dimensionality and dose-response data. ITS approaches are currently fueled by the increasing mechanistic understanding of adverse outcome pathways (AOP) and the development of tests reflecting these mechanisms. Simple approaches to combine skin sensitization data sets, such as weight of evidence, fail due to problems in information redundancy and high dimensionality. The problem is further amplified when potency information (dose/response) of hazards would be estimated. Skin sensitization currently serves as the foster child for AOP and ITS development, as legislative pressures combined with a very good mechanistic understanding of contact dermatitis have led to test development and relatively large high-quality data sets. We curated such a data set and combined a recursive variable selection algorithm to evaluate the information available through in silico, in chemico and in vitro assays. Chemical similarity alone could not cluster chemicals' potency, and in vitro models consistently ranked high in recursive feature elimination. This allows reducing the number of tests included in an ITS. Next, we analyzed with a hidden Markov model that takes advantage of an intrinsic inter-relationship among the local lymph node assay classes, i.e. the monotonous connection between local lymph node assay and dose. The dose-informed random forest/hidden Markov model was superior to the dose-naive random forest model on all data sets. Although balanced accuracy improvement may seem small, this obscures the actual improvement in misclassifications as the dose-informed hidden Markov model strongly reduced " false-negatives" (i.e. extreme sensitizers as non-sensitizer) on all data sets.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-28T10:17:23Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Luechtefeld, Thomas</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-28T10:17:23Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>Probabilistic hazard assessment for skin sensitization potency by dose-response modeling using feature elimination instead of quantitative structure-activity relationships</dcterms:title>
    <dc:creator>Hartung, Thomas</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Kleensang, Andre</dc:contributor>
    <dcterms:issued>2015</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Sá-Rocha, Vanessa</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen