Distortion minimization with a fast local search for fractal image compression
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Optimal fractal image coding is an NP-hard combinatorial optimization problem, which consists of finding in a finite set of contractive affine mappings one whose unique fixed point is closest to the original image. Current fractal image schemes are based on a greedy suboptimal algorithm known as collage coding. In a previous paper, Hamzaoui, Hartenstein, and Saupe proposed a local search algorithm that iteratively improves an initial solution found by collage coding. For a standard fractal scheme based on quadtree image partitions peak-signal-to-noise ratio (PSNR)gains are up to 0.8 dB. However, the algorithm is time-consuming because it involves many iteration steps, each of which requires the computation of the fixed point of an affine mapping. In this paper, we provide techniques that drastically reduce the complexity of the algorithm. Moreover, we show that the algorithm is also successful with a state-of-the-art fractal scheme based on more general image partitions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAMZAOUI, Raouf, Dietmar SAUPE, Michael HILLER, 2001. Distortion minimization with a fast local search for fractal image compression. In: Journal of Visual Communication and Image Representation. 2001, 12(4), pp. 450-468. ISSN 1047-3203. Available under: doi: 10.1006/jvci.2001.0492BibTex
@article{Hamzaoui2001Disto-22379, year={2001}, doi={10.1006/jvci.2001.0492}, title={Distortion minimization with a fast local search for fractal image compression}, number={4}, volume={12}, issn={1047-3203}, journal={Journal of Visual Communication and Image Representation}, pages={450--468}, author={Hamzaoui, Raouf and Saupe, Dietmar and Hiller, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22379"> <dc:creator>Hiller, Michael</dc:creator> <dcterms:issued>2001</dcterms:issued> <dcterms:title>Distortion minimization with a fast local search for fractal image compression</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Hamzaoui, Raouf</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-04-03T13:59:58Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Optimal fractal image coding is an NP-hard combinatorial optimization problem, which consists of finding in a finite set of contractive affine mappings one whose unique fixed point is closest to the original image. Current fractal image schemes are based on a greedy suboptimal algorithm known as collage coding. In a previous paper, Hamzaoui, Hartenstein, and Saupe proposed a local search algorithm that iteratively improves an initial solution found by collage coding. For a standard fractal scheme based on quadtree image partitions peak-signal-to-noise ratio (PSNR)gains are up to 0.8 dB. However, the algorithm is time-consuming because it involves many iteration steps, each of which requires the computation of the fixed point of an affine mapping. In this paper, we provide techniques that drastically reduce the complexity of the algorithm. Moreover, we show that the algorithm is also successful with a state-of-the-art fractal scheme based on more general image partitions.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Saupe, Dietmar</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22379"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hiller, Michael</dc:contributor> <dc:contributor>Hamzaoui, Raouf</dc:contributor> <dc:contributor>Saupe, Dietmar</dc:contributor> <dcterms:bibliographicCitation>Journal of Visual Communication and Image Representation ; 12 (2001), 4. - S. 450-468</dcterms:bibliographicCitation> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-04-03T13:59:58Z</dc:date> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>