Collective foraging of active particles trained by reinforcement learning

Lade...
Vorschaubild
Dateien
Loeffler_2-bqxlfzt012te0.pdf
Loeffler_2-bqxlfzt012te0.pdfGröße: 4.55 MBDownloads: 13
Datum
2023
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): 422037984
European Union (EU): 693683
European Union (EU): 693683
Deutsche Forschungsgemeinschaft (DFG): DFG Centre of Excellence 2117 ‘Centre for the Advances Study of Collective Behaviour’ (ID: 422037984)
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Collective self-organization of animal groups is a recurring phenomenon in nature which has attracted a lot of attention in natural and social sciences. To understand how collective motion can be achieved without the presence of an external control, social interactions have been considered which regulate the motion and orientation of neighbors relative to each other. Here, we want to understand the motivation and possible reasons behind the emergence of such interaction rules using an experimental model system of light-responsive active colloidal particles (APs). Via reinforcement learning (RL), the motion of particles is optimized regarding their foraging behavior in presence of randomly appearing food sources. Although RL maximizes the rewards of single APs, we observe the emergence of collective behaviors within the particle group. The advantage of such collective strategy in context of foraging is to compensate lack of local information which strongly increases the robustness of the resulting policy. Our results demonstrate that collective behavior may not only result on the optimization of behaviors on the group level but may also arise from maximizing the benefit of individuals. Apart from a better understanding of collective behaviors in natural systems, these results may also be useful in context of the design of autonomous robotic systems.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690LÖFFLER, Robert C., Emanuele PANIZON, Clemens BECHINGER, 2023. Collective foraging of active particles trained by reinforcement learning. In: Scientific Reports. Springer. 2023, 13, 17055. eISSN 2045-2322. Available under: doi: 10.1038/s41598-023-44268-3
BibTex
@article{Loffler2023Colle-69185,
  year={2023},
  doi={10.1038/s41598-023-44268-3},
  title={Collective foraging of active particles trained by reinforcement learning},
  volume={13},
  journal={Scientific Reports},
  author={Löffler, Robert C. and Panizon, Emanuele and Bechinger, Clemens},
  note={Article Number: 17055}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69185">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Löffler, Robert C.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:issued>2023</dcterms:issued>
    <dc:creator>Bechinger, Clemens</dc:creator>
    <dc:creator>Panizon, Emanuele</dc:creator>
    <dcterms:title>Collective foraging of active particles trained by reinforcement learning</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69185/1/Loeffler_2-bqxlfzt012te0.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-26T09:26:26Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-26T09:26:26Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69185"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69185/1/Loeffler_2-bqxlfzt012te0.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Panizon, Emanuele</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Bechinger, Clemens</dc:contributor>
    <dcterms:abstract>Collective self-organization of animal groups is a recurring phenomenon in nature which has attracted a lot of attention in natural and social sciences. To understand how collective motion can be achieved without the presence of an external control, social interactions have been considered which regulate the motion and orientation of neighbors relative to each other. Here, we want to understand the motivation and possible reasons behind the emergence of such interaction rules using an experimental model system of light-responsive active colloidal particles (APs). Via reinforcement learning (RL), the motion of particles is optimized regarding their foraging behavior in presence of randomly appearing food sources. Although RL maximizes the rewards of single APs, we observe the emergence of collective behaviors within the particle group. The advantage of such collective strategy in context of foraging is to compensate lack of local information which strongly increases the robustness of the resulting policy. Our results demonstrate that collective behavior may not only result on the optimization of behaviors on the group level but may also arise from maximizing the benefit of individuals. Apart from a better understanding of collective behaviors in natural systems, these results may also be useful in context of the design of autonomous robotic systems.</dcterms:abstract>
    <dc:creator>Löffler, Robert C.</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen