Publikation:

Collective foraging of active particles trained by reinforcement learning

Lade...
Vorschaubild

Dateien

Loeffler_2-bqxlfzt012te0.pdf
Loeffler_2-bqxlfzt012te0.pdfGröße: 4.55 MBDownloads: 27

Datum

2023

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 422037984
European Union (EU): 693683
European Union (EU): 693683
Deutsche Forschungsgemeinschaft (DFG): DFG Centre of Excellence 2117 ‘Centre for the Advances Study of Collective Behaviour’ (ID: 422037984)

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Scientific Reports. Springer. 2023, 13, 17055. eISSN 2045-2322. Available under: doi: 10.1038/s41598-023-44268-3

Zusammenfassung

Collective self-organization of animal groups is a recurring phenomenon in nature which has attracted a lot of attention in natural and social sciences. To understand how collective motion can be achieved without the presence of an external control, social interactions have been considered which regulate the motion and orientation of neighbors relative to each other. Here, we want to understand the motivation and possible reasons behind the emergence of such interaction rules using an experimental model system of light-responsive active colloidal particles (APs). Via reinforcement learning (RL), the motion of particles is optimized regarding their foraging behavior in presence of randomly appearing food sources. Although RL maximizes the rewards of single APs, we observe the emergence of collective behaviors within the particle group. The advantage of such collective strategy in context of foraging is to compensate lack of local information which strongly increases the robustness of the resulting policy. Our results demonstrate that collective behavior may not only result on the optimization of behaviors on the group level but may also arise from maximizing the benefit of individuals. Apart from a better understanding of collective behaviors in natural systems, these results may also be useful in context of the design of autonomous robotic systems.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690LÖFFLER, Robert C., Emanuele PANIZON, Clemens BECHINGER, 2023. Collective foraging of active particles trained by reinforcement learning. In: Scientific Reports. Springer. 2023, 13, 17055. eISSN 2045-2322. Available under: doi: 10.1038/s41598-023-44268-3
BibTex
@article{Loffler2023Colle-69185,
  year={2023},
  doi={10.1038/s41598-023-44268-3},
  title={Collective foraging of active particles trained by reinforcement learning},
  volume={13},
  journal={Scientific Reports},
  author={Löffler, Robert C. and Panizon, Emanuele and Bechinger, Clemens},
  note={Article Number: 17055}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69185">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Löffler, Robert C.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:issued>2023</dcterms:issued>
    <dc:creator>Bechinger, Clemens</dc:creator>
    <dc:creator>Panizon, Emanuele</dc:creator>
    <dcterms:title>Collective foraging of active particles trained by reinforcement learning</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69185/1/Loeffler_2-bqxlfzt012te0.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-26T09:26:26Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-26T09:26:26Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69185"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69185/1/Loeffler_2-bqxlfzt012te0.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Panizon, Emanuele</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Bechinger, Clemens</dc:contributor>
    <dcterms:abstract>Collective self-organization of animal groups is a recurring phenomenon in nature which has attracted a lot of attention in natural and social sciences. To understand how collective motion can be achieved without the presence of an external control, social interactions have been considered which regulate the motion and orientation of neighbors relative to each other. Here, we want to understand the motivation and possible reasons behind the emergence of such interaction rules using an experimental model system of light-responsive active colloidal particles (APs). Via reinforcement learning (RL), the motion of particles is optimized regarding their foraging behavior in presence of randomly appearing food sources. Although RL maximizes the rewards of single APs, we observe the emergence of collective behaviors within the particle group. The advantage of such collective strategy in context of foraging is to compensate lack of local information which strongly increases the robustness of the resulting policy. Our results demonstrate that collective behavior may not only result on the optimization of behaviors on the group level but may also arise from maximizing the benefit of individuals. Apart from a better understanding of collective behaviors in natural systems, these results may also be useful in context of the design of autonomous robotic systems.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Löffler, Robert C.</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen