Publikation: Collective foraging of active particles trained by reinforcement learning
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
European Union (EU): 693683
European Union (EU): 693683
Deutsche Forschungsgemeinschaft (DFG): DFG Centre of Excellence 2117 ‘Centre for the Advances Study of Collective Behaviour’ (ID: 422037984)
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Collective self-organization of animal groups is a recurring phenomenon in nature which has attracted a lot of attention in natural and social sciences. To understand how collective motion can be achieved without the presence of an external control, social interactions have been considered which regulate the motion and orientation of neighbors relative to each other. Here, we want to understand the motivation and possible reasons behind the emergence of such interaction rules using an experimental model system of light-responsive active colloidal particles (APs). Via reinforcement learning (RL), the motion of particles is optimized regarding their foraging behavior in presence of randomly appearing food sources. Although RL maximizes the rewards of single APs, we observe the emergence of collective behaviors within the particle group. The advantage of such collective strategy in context of foraging is to compensate lack of local information which strongly increases the robustness of the resulting policy. Our results demonstrate that collective behavior may not only result on the optimization of behaviors on the group level but may also arise from maximizing the benefit of individuals. Apart from a better understanding of collective behaviors in natural systems, these results may also be useful in context of the design of autonomous robotic systems.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LÖFFLER, Robert C., Emanuele PANIZON, Clemens BECHINGER, 2023. Collective foraging of active particles trained by reinforcement learning. In: Scientific Reports. Springer. 2023, 13, 17055. eISSN 2045-2322. Available under: doi: 10.1038/s41598-023-44268-3BibTex
@article{Loffler2023Colle-69185, year={2023}, doi={10.1038/s41598-023-44268-3}, title={Collective foraging of active particles trained by reinforcement learning}, volume={13}, journal={Scientific Reports}, author={Löffler, Robert C. and Panizon, Emanuele and Bechinger, Clemens}, note={Article Number: 17055} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69185"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Löffler, Robert C.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:issued>2023</dcterms:issued> <dc:creator>Bechinger, Clemens</dc:creator> <dc:creator>Panizon, Emanuele</dc:creator> <dcterms:title>Collective foraging of active particles trained by reinforcement learning</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69185/1/Loeffler_2-bqxlfzt012te0.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-26T09:26:26Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-26T09:26:26Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69185"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69185/1/Loeffler_2-bqxlfzt012te0.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Panizon, Emanuele</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Bechinger, Clemens</dc:contributor> <dcterms:abstract>Collective self-organization of animal groups is a recurring phenomenon in nature which has attracted a lot of attention in natural and social sciences. To understand how collective motion can be achieved without the presence of an external control, social interactions have been considered which regulate the motion and orientation of neighbors relative to each other. Here, we want to understand the motivation and possible reasons behind the emergence of such interaction rules using an experimental model system of light-responsive active colloidal particles (APs). Via reinforcement learning (RL), the motion of particles is optimized regarding their foraging behavior in presence of randomly appearing food sources. Although RL maximizes the rewards of single APs, we observe the emergence of collective behaviors within the particle group. The advantage of such collective strategy in context of foraging is to compensate lack of local information which strongly increases the robustness of the resulting policy. Our results demonstrate that collective behavior may not only result on the optimization of behaviors on the group level but may also arise from maximizing the benefit of individuals. Apart from a better understanding of collective behaviors in natural systems, these results may also be useful in context of the design of autonomous robotic systems.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Löffler, Robert C.</dc:creator> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>