No-reference quality assessment for DCT-based compressed image

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Autor:innen
Wang, Ci
Yao, Chen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Visual Communication and Image Representation. 2015, 28, pp. 53-59. ISSN 1047-3203. eISSN 1095-9076. Available under: doi: 10.1016/j.jvcir.2015.01.006
Zusammenfassung

A blind/no-reference (NR) method is proposed in this paper for image quality assessment (IQA) of the images compressed in discrete cosine transform (DCT) domain. When an image is measured by structural similarity (SSIM), two variances, i.e. mean intensity and variance of the image, are used as features. However, the parameters of original copies are actually unavailable in NR applications; hence SSIM is not widely applicable. To extend SSIM in general cases, we apply Gaussian model to fit quantization noise in spatial domain, and directly estimate noise distribution from the compressed version. Benefit from this rearrangement, the revised SSIM does not require original image as the reference. Heavy compression always results in some zero-value DCT coefficients, which need to be compensated for more accurate parameter estimate. By studying the quantization process, a machine-learning based algorithm is proposed to estimate quantization noise taking image content into consideration. Compared with state-of-the-art algorithms, the proposed IQA is more heuristic and efficient. With some experimental results, we verify that the proposed algorithm (provided no reference image) achieves comparable efficacy to some full reference (FR) methods (provided the reference image), such as SSIM.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Compression distortion; Probability model; No-reference estimate; Objective quality assessment; Image quality assessment; Gaussian distribution; Uniform distribution; Noise variance
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690WANG, Ci, Minmin SHEN, Chen YAO, 2015. No-reference quality assessment for DCT-based compressed image. In: Journal of Visual Communication and Image Representation. 2015, 28, pp. 53-59. ISSN 1047-3203. eISSN 1095-9076. Available under: doi: 10.1016/j.jvcir.2015.01.006
BibTex
@article{Wang2015Noref-30316,
  year={2015},
  doi={10.1016/j.jvcir.2015.01.006},
  title={No-reference quality assessment for DCT-based compressed image},
  volume={28},
  issn={1047-3203},
  journal={Journal of Visual Communication and Image Representation},
  pages={53--59},
  author={Wang, Ci and Shen, Minmin and Yao, Chen}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30316">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Shen, Minmin</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:language>eng</dc:language>
    <dcterms:title>No-reference quality assessment for DCT-based compressed image</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T15:33:28Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Yao, Chen</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Shen, Minmin</dc:creator>
    <dcterms:issued>2015</dcterms:issued>
    <dc:creator>Wang, Ci</dc:creator>
    <dc:contributor>Wang, Ci</dc:contributor>
    <dc:creator>Yao, Chen</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">A blind/no-reference (NR) method is proposed in this paper for image quality assessment (IQA) of the images compressed in discrete cosine transform (DCT) domain. When an image is measured by structural similarity (SSIM), two variances, i.e. mean intensity and variance of the image, are used as features. However, the parameters of original copies are actually unavailable in NR applications; hence SSIM is not widely applicable. To extend SSIM in general cases, we apply Gaussian model to fit quantization noise in spatial domain, and directly estimate noise distribution from the compressed version. Benefit from this rearrangement, the revised SSIM does not require original image as the reference. Heavy compression always results in some zero-value DCT coefficients, which need to be compensated for more accurate parameter estimate. By studying the quantization process, a machine-learning based algorithm is proposed to estimate quantization noise taking image content into consideration. Compared with state-of-the-art algorithms, the proposed IQA is more heuristic and efficient. With some experimental results, we verify that the proposed algorithm (provided no reference image) achieves comparable efficacy to some full reference (FR) methods (provided the reference image), such as SSIM.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T15:33:28Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30316"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen