Publikation:

The Matthew effect : Common species become more common and rare ones become more rare in response to artificial light at night

Lade...
Vorschaubild

Dateien

Liu_2-bggeju9t2bhu7.pdf
Liu_2-bggeju9t2bhu7.pdfGröße: 1.86 MBDownloads: 112

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Global Change Biology. Wiley. 2022, 28(11), pp. 3674-3682. ISSN 1354-1013. eISSN 1365-2486. Available under: doi: 10.1111/gcb.16126

Zusammenfassung

Artificial light at night (ALAN) has been and still is rapidly spreading and has become an important component of global change. Although numerous studies have tested its potential biological and ecological impacts on animals, very few studies have tested whether it affects alien and native plants differently. Furthermore, common plant species, and particularly common alien species, are often found to benefit more from additional resources than rare native and rare alien species. Whether this is also the case with regard to increasing light due to ALAN is still unknown. Here, we tested how ALAN affected the performance of common and rare alien and native plant species in Germany directly, and indirectly via flying insects. We grew five common alien, six rare alien, five common native, and four rare native plant species under four combinations of two ALAN (no ALAN vs. ALAN) and two insect-exclusion (no exclusion vs. exclusion) treatments, and compared their biomass production. We found that common plant species, irrespective of their origin, produced significantly more biomass than rare species and that this was particularly true under ALAN. Furthermore, alien species tended to show a slightly stronger positive response to ALAN than native species did (p = .079). Our study shows that common plant species benefited more from ALAN than rare ones. This might lead to competitive exclusion of rare species, which could have cascading impacts on other trophic levels and thus have important community-wide consequences when ALAN becomes more widespread. In addition, the slightly more positive response of alien species indicates that ALAN might increase the risk of alien plant invasions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

anthropocene, exotic, invasiveness, light pollution, non-native, plant-insect interaction, trophic level

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LIU, Yanjie, Benedikt SPEISSER, Eva KNOP, Mark VAN KLEUNEN, 2022. The Matthew effect : Common species become more common and rare ones become more rare in response to artificial light at night. In: Global Change Biology. Wiley. 2022, 28(11), pp. 3674-3682. ISSN 1354-1013. eISSN 1365-2486. Available under: doi: 10.1111/gcb.16126
BibTex
@article{Liu2022-06Matth-56735,
  year={2022},
  doi={10.1111/gcb.16126},
  title={The Matthew effect : Common species become more common and rare ones become more rare in response to artificial light at night},
  number={11},
  volume={28},
  issn={1354-1013},
  journal={Global Change Biology},
  pages={3674--3682},
  author={Liu, Yanjie and Speißer, Benedikt and Knop, Eva and van Kleunen, Mark}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56735">
    <dc:creator>Liu, Yanjie</dc:creator>
    <dcterms:abstract xml:lang="eng">Artificial light at night (ALAN) has been and still is rapidly spreading and has become an important component of global change. Although numerous studies have tested its potential biological and ecological impacts on animals, very few studies have tested whether it affects alien and native plants differently. Furthermore, common plant species, and particularly common alien species, are often found to benefit more from additional resources than rare native and rare alien species. Whether this is also the case with regard to increasing light due to ALAN is still unknown. Here, we tested how ALAN affected the performance of common and rare alien and native plant species in Germany directly, and indirectly via flying insects. We grew five common alien, six rare alien, five common native, and four rare native plant species under four combinations of two ALAN (no ALAN vs. ALAN) and two insect-exclusion (no exclusion vs. exclusion) treatments, and compared their biomass production. We found that common plant species, irrespective of their origin, produced significantly more biomass than rare species and that this was particularly true under ALAN. Furthermore, alien species tended to show a slightly stronger positive response to ALAN than native species did (p = .079). Our study shows that common plant species benefited more from ALAN than rare ones. This might lead to competitive exclusion of rare species, which could have cascading impacts on other trophic levels and thus have important community-wide consequences when ALAN becomes more widespread. In addition, the slightly more positive response of alien species indicates that ALAN might increase the risk of alien plant invasions.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-03T10:53:30Z</dcterms:available>
    <dc:contributor>Liu, Yanjie</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56735/3/Liu_2-bggeju9t2bhu7.pdf"/>
    <dc:creator>Knop, Eva</dc:creator>
    <dcterms:issued>2022-06</dcterms:issued>
    <dc:creator>Speißer, Benedikt</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-03T10:53:30Z</dc:date>
    <dc:creator>van Kleunen, Mark</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Knop, Eva</dc:contributor>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Speißer, Benedikt</dc:contributor>
    <dcterms:title>The Matthew effect : Common species become more common and rare ones become more rare in response to artificial light at night</dcterms:title>
    <dc:contributor>van Kleunen, Mark</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56735/3/Liu_2-bggeju9t2bhu7.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56735"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen