Runge‐Kutta methods for monotone differential and stochastic equations

No Thumbnail Available
Files
There are no files associated with this item.
Date
2003
Authors
Kloeden, Peter
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Proceedings in Applied Mathematics and Mechanics : PAMM ; 3 (2003), 1. - pp. 565-566. - eISSN 1617-7061
Abstract
Runge‐Kutta methods which preserve monotonicity for deterministic ordinary differential equations also preserve montonicity for random differential equations albeit with reduced order. However, the only one‐step numerical methods which preserve the montone structure of a monotone stochastic differential equation are the strong Taylor schemes of strong order 0:5 and 1:0.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690KLOEDEN, Peter, Johannes SCHROPP, 2003. Runge‐Kutta methods for monotone differential and stochastic equations. In: Proceedings in Applied Mathematics and Mechanics : PAMM. 3(1), pp. 565-566. eISSN 1617-7061. Available under: doi: 10.1002/pamm.200310550
BibTex
@article{Kloeden2003-12Runge-43210,
  year={2003},
  doi={10.1002/pamm.200310550},
  title={Runge‐Kutta methods for monotone differential and stochastic equations},
  number={1},
  volume={3},
  journal={Proceedings in Applied Mathematics and Mechanics : PAMM},
  pages={565--566},
  author={Kloeden, Peter and Schropp, Johannes}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43210">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43210"/>
    <dc:contributor>Kloeden, Peter</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-10T11:51:11Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">Runge‐Kutta methods which preserve monotonicity for deterministic ordinary differential equations also preserve montonicity for random differential equations albeit with reduced order. However, the only one‐step numerical methods which preserve the montone structure of a monotone stochastic differential equation are the strong Taylor schemes of strong order 0:5 and 1:0.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-10T11:51:11Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dc:creator>Schropp, Johannes</dc:creator>
    <dc:creator>Kloeden, Peter</dc:creator>
    <dc:contributor>Schropp, Johannes</dc:contributor>
    <dcterms:title>Runge‐Kutta methods for monotone differential and stochastic equations</dcterms:title>
    <dcterms:issued>2003-12</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Unknown