Sublinear Search Spaces for Shortest Path Planning in Grid and Road Networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Shortest path planning is a fundamental building block in many applications. Hence developing efficient methods for computing shortest paths in, e.g., road or grid networks is an important challenge. The most successful techniques for fast query answering rely on preprocessing. However, for many of these techniques it is not fully understood why they perform so remarkably well, and theoretical justification for the empirical results is missing. An attempt to explain the excellent practical performance of preprocessing based techniques on road networks (as transit nodes, hub labels, or contraction hierarchies) in a sound theoretical way are parametrized analyses, e.g., considering the highway dimension or skeleton dimension of a graph. Still, these parameters may be large in case the network contains grid-like substructures—which inarguably is the case for real-world road networks around the globe. In this paper, we use the very intuitive notion of bounded growth graphs to describe road networks and also grid graphs. We show that this model suffices to prove sublinear search spaces for the three above mentioned state-of-the-art shortest path planning techniques. Furthermore, our preprocessing methods are close to the ones used in practice and only require expected polynomial time.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BLUM, Johannes, Stefan FUNKE, Sabine STORANDT, 2021. Sublinear Search Spaces for Shortest Path Planning in Grid and Road Networks. In: Journal of Combinatorial Optimization. Springer. 2021, 42(2), pp. 231-257. ISSN 1382-6905. eISSN 1573-2886. Available under: doi: 10.1007/s10878-021-00777-3BibTex
@article{Blum2021-08Subli-44520.2, year={2021}, doi={10.1007/s10878-021-00777-3}, title={Sublinear Search Spaces for Shortest Path Planning in Grid and Road Networks}, number={2}, volume={42}, issn={1382-6905}, journal={Journal of Combinatorial Optimization}, pages={231--257}, author={Blum, Johannes and Funke, Stefan and Storandt, Sabine} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44520.2"> <dc:creator>Storandt, Sabine</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44520.2"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-05T11:13:09Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Blum, Johannes</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44520.2/1/Blum_2-azmjbiivodmm5.pdf"/> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44520.2/1/Blum_2-azmjbiivodmm5.pdf"/> <dc:contributor>Storandt, Sabine</dc:contributor> <dcterms:issued>2021-08</dcterms:issued> <dcterms:abstract xml:lang="eng">Shortest path planning is a fundamental building block in many applications. Hence developing efficient methods for computing shortest paths in, e.g., road or grid networks is an important challenge. The most successful techniques for fast query answering rely on preprocessing. However, for many of these techniques it is not fully understood why they perform so remarkably well, and theoretical justification for the empirical results is missing. An attempt to explain the excellent practical performance of preprocessing based techniques on road networks (as transit nodes, hub labels, or contraction hierarchies) in a sound theoretical way are parametrized analyses, e.g., considering the highway dimension or skeleton dimension of a graph. Still, these parameters may be large in case the network contains grid-like substructures—which inarguably is the case for real-world road networks around the globe. In this paper, we use the very intuitive notion of bounded growth graphs to describe road networks and also grid graphs. We show that this model suffices to prove sublinear search spaces for the three above mentioned state-of-the-art shortest path planning techniques. Furthermore, our preprocessing methods are close to the ones used in practice and only require expected polynomial time.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Blum, Johannes</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-05T11:13:09Z</dc:date> <dc:creator>Funke, Stefan</dc:creator> <dc:contributor>Funke, Stefan</dc:contributor> <dcterms:title>Sublinear Search Spaces for Shortest Path Planning in Grid and Road Networks</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>