Transport Spectroscopy of a Spin-Coherent Dot-Cavity System
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Quantum engineering requires controllable artificial systems with quantum coherence exceeding the device size and operation time. This can be achieved with geometrically confined low-dimensional electronic structures embedded within ultraclean materials, with prominent examples being artificial atoms (quantum dots) and quantum corrals (electronic cavities). Combining the two structures, we implement a mesoscopic coupled dot-cavity system in a high-mobility two-dimensional electron gas, and obtain an extended spin-singlet state in the regime of strong dot-cavity coupling. Engineering such extended quantum states presents a viable route for nonlocal spin coupling that is applicable for quantum information processing.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RÖSSLER, Clemens, David OEHRI, Oded ZILBERBERG, Gianni BLATTER, Matija KARALIC, Jana PIJNENBURG, Andreas HOFMANN, Thomas IHN, Klaus ENSSLIN, Christian REICHL, 2015. Transport Spectroscopy of a Spin-Coherent Dot-Cavity System. In: Physical Review Letters. American Physical Society (APS). 2015, 115(16), 166603. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.115.166603BibTex
@article{Rossler2015-10-16Trans-55219, year={2015}, doi={10.1103/PhysRevLett.115.166603}, title={Transport Spectroscopy of a Spin-Coherent Dot-Cavity System}, number={16}, volume={115}, issn={0031-9007}, journal={Physical Review Letters}, author={Rössler, Clemens and Oehri, David and Zilberberg, Oded and Blatter, Gianni and Karalic, Matija and Pijnenburg, Jana and Hofmann, Andreas and Ihn, Thomas and Ensslin, Klaus and Reichl, Christian}, note={Article Number: 166603} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55219"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Hofmann, Andreas</dc:creator> <dc:contributor>Reichl, Christian</dc:contributor> <dc:contributor>Karalic, Matija</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Reichl, Christian</dc:creator> <dc:contributor>Ihn, Thomas</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-12T08:37:49Z</dc:date> <dc:contributor>Rössler, Clemens</dc:contributor> <dc:creator>Zilberberg, Oded</dc:creator> <dc:creator>Oehri, David</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55219"/> <dc:creator>Ihn, Thomas</dc:creator> <dc:creator>Pijnenburg, Jana</dc:creator> <dc:contributor>Oehri, David</dc:contributor> <dc:contributor>Hofmann, Andreas</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Ensslin, Klaus</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-12T08:37:49Z</dcterms:available> <dc:creator>Blatter, Gianni</dc:creator> <dcterms:abstract xml:lang="eng">Quantum engineering requires controllable artificial systems with quantum coherence exceeding the device size and operation time. This can be achieved with geometrically confined low-dimensional electronic structures embedded within ultraclean materials, with prominent examples being artificial atoms (quantum dots) and quantum corrals (electronic cavities). Combining the two structures, we implement a mesoscopic coupled dot-cavity system in a high-mobility two-dimensional electron gas, and obtain an extended spin-singlet state in the regime of strong dot-cavity coupling. Engineering such extended quantum states presents a viable route for nonlocal spin coupling that is applicable for quantum information processing.</dcterms:abstract> <dc:creator>Karalic, Matija</dc:creator> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Pijnenburg, Jana</dc:contributor> <dc:creator>Ensslin, Klaus</dc:creator> <dcterms:issued>2015-10-16</dcterms:issued> <dc:creator>Rössler, Clemens</dc:creator> <dc:contributor>Blatter, Gianni</dc:contributor> <dc:contributor>Zilberberg, Oded</dc:contributor> <dcterms:title>Transport Spectroscopy of a Spin-Coherent Dot-Cavity System</dcterms:title> </rdf:Description> </rdf:RDF>