A Visual Analytics Approach for Crime Signature Generation and Exploration
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The exploration of volumes of crime reports is a tedious task in crime intelligence analysis, given the largely unstructured nature of the crime descriptions. This paper describes a Visual Analytics approach for crime signature exploration that tightly integrates automated event sequence extraction and signature mining with interactive visualization. We describe the major components of our analysis pipeline — crime concept/event extraction, crime sequence mining, and interactive visualization. We illustrate its applicability with a real world use case. Finally, we discuss current problems, future plans, and open challenges in our development of a solution that incorporates automated event pattern mining with human expert feedback.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JENTNER, Wolfgang, Geoffrey ELLIS, Florian STOFFEL, Dominik SACHA, Daniel A. KEIM, 2016. A Visual Analytics Approach for Crime Signature Generation and Exploration. IEEE VIS2016 Workshop on Temporal & Sequential Event Analysis. Baltimore, USA, 24. Okt. 2016. In: IEEE VIS2016 Workshop on Temporal & Sequential Event Analysis : Papers. 2016BibTex
@inproceedings{Jentner2016Visua-41296, year={2016}, title={A Visual Analytics Approach for Crime Signature Generation and Exploration}, url={http://eventevent.github.io/papers/EVENT_2016_paper_24.pdf}, booktitle={IEEE VIS2016 Workshop on Temporal & Sequential Event Analysis : Papers}, author={Jentner, Wolfgang and Ellis, Geoffrey and Stoffel, Florian and Sacha, Dominik and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41296"> <dcterms:issued>2016</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-12T11:59:18Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41296"/> <dc:creator>Jentner, Wolfgang</dc:creator> <dc:creator>Ellis, Geoffrey</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41296/3/Jentner_2-9huiij7kbxyc7.pdf"/> <dc:contributor>Stoffel, Florian</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>A Visual Analytics Approach for Crime Signature Generation and Exploration</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Jentner, Wolfgang</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">The exploration of volumes of crime reports is a tedious task in crime intelligence analysis, given the largely unstructured nature of the crime descriptions. This paper describes a Visual Analytics approach for crime signature exploration that tightly integrates automated event sequence extraction and signature mining with interactive visualization. We describe the major components of our analysis pipeline — crime concept/event extraction, crime sequence mining, and interactive visualization. We illustrate its applicability with a real world use case. Finally, we discuss current problems, future plans, and open challenges in our development of a solution that incorporates automated event pattern mining with human expert feedback.</dcterms:abstract> <dc:creator>Sacha, Dominik</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41296/3/Jentner_2-9huiij7kbxyc7.pdf"/> <dc:contributor>Sacha, Dominik</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Stoffel, Florian</dc:creator> <dc:contributor>Ellis, Geoffrey</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-12T11:59:18Z</dc:date> </rdf:Description> </rdf:RDF>