Universal quantum computation with the exchange interaction
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Various physical implementations of quantum computers are being investigated, although the requirements1 that must be met to make such devices a reality in the laboratory at present involve capabilities well beyond the state of the art. Recent solid-state approaches have used quantum dots2, donor-atom nuclear spins3 or electron spins4; in these architectures, the basic two-qubit quantum gate is generated by a tunable exchange interaction between spins (a Heisenberg interaction), whereas the one-qubit gates require control over a local magnetic field. Compared to the Heisenberg operation, the one-qubit operations are significantly slower, requiring substantially greater materials and device complexity—potentially contributing to a detrimental increase in the decoherence rate. Here we introduced an explicit scheme in which the Heisenberg interaction alone suffices to implement exactly any quantum computer circuit. This capability comes at a price of a factor of three in additional qubits, and about a factor of ten in additional two-qubit operations. Even at this cost, the ability to eliminate the complexity of one-qubit operations should accelerate progress towards solid-state implementations of quantum computation1.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DI VINCENZO, David P., David BACON, Julia KEMPE, Guido BURKARD, K. Brigitta WHALEY, 2000. Universal quantum computation with the exchange interaction. In: Nature. 2000, 408, pp. 339-342. ISSN 0028-0836. eISSN 1476-4687. Available under: doi: 10.1038/35042541BibTex
@article{DiVincenzo2000Unive-29158, year={2000}, doi={10.1038/35042541}, title={Universal quantum computation with the exchange interaction}, volume={408}, issn={0028-0836}, journal={Nature}, pages={339--342}, author={Di Vincenzo, David P. and Bacon, David and Kempe, Julia and Burkard, Guido and Whaley, K. Brigitta} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29158"> <dc:creator>Burkard, Guido</dc:creator> <dc:contributor>Bacon, David</dc:contributor> <dcterms:title>Universal quantum computation with the exchange interaction</dcterms:title> <dc:language>eng</dc:language> <dc:creator>Kempe, Julia</dc:creator> <dc:contributor>Whaley, K. Brigitta</dc:contributor> <dc:contributor>Kempe, Julia</dc:contributor> <dc:creator>Bacon, David</dc:creator> <dcterms:issued>2000</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29158"/> <dc:contributor>Burkard, Guido</dc:contributor> <dc:creator>Whaley, K. Brigitta</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Di Vincenzo, David P.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-21T10:41:57Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-21T10:41:57Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Di Vincenzo, David P.</dc:contributor> <dcterms:abstract xml:lang="eng">Various physical implementations of quantum computers are being investigated, although the requirements<sup>1</sup> that must be met to make such devices a reality in the laboratory at present involve capabilities well beyond the state of the art. Recent solid-state approaches have used quantum dots<sup>2</sup>, donor-atom nuclear spins<sup>3</sup> or electron spins<sup>4</sup>; in these architectures, the basic two-qubit quantum gate is generated by a tunable exchange interaction between spins (a Heisenberg interaction), whereas the one-qubit gates require control over a local magnetic field. Compared to the Heisenberg operation, the one-qubit operations are significantly slower, requiring substantially greater materials and device complexity—potentially contributing to a detrimental increase in the decoherence rate. Here we introduced an explicit scheme in which the Heisenberg interaction alone suffices to implement exactly any quantum computer circuit. This capability comes at a price of a factor of three in additional qubits, and about a factor of ten in additional two-qubit operations. Even at this cost, the ability to eliminate the complexity of one-qubit operations should accelerate progress towards solid-state implementations of quantum computation<sup>1</sup>.</dcterms:abstract> </rdf:Description> </rdf:RDF>