Positivity in power series rings

No Thumbnail Available
Files
There are no files associated with this item.
Date
2010
Authors
Cimprič, Jaka
Marshall, Murray
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Advances in Geometry ; 10 (2010), 1. - ISSN 1615-715X
Abstract
We extend and generalize results of Scheiderer (2006) on the representation of polynomials nonnegative on two-dimensional basic closed semialgebraic sets. Our extension covers some situations where the defining polynomials do not satisfy the transversality condition. Such situations arise naturally when one considers semialgebraic sets invariant under finite group actions.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690CIMPRIČ, Jaka, Murray MARSHALL, Salma KUHLMANN, 2010. Positivity in power series rings. In: Advances in Geometry. 10(1). ISSN 1615-715X. Available under: doi: 10.1515/ADVGEOM.2009.036
BibTex
@article{Cimpric2010Posit-12752,
  year={2010},
  doi={10.1515/ADVGEOM.2009.036},
  title={Positivity in power series rings},
  number={1},
  volume={10},
  issn={1615-715X},
  journal={Advances in Geometry},
  author={Cimprič, Jaka and Marshall, Murray and Kuhlmann, Salma}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12752">
    <dc:contributor>Kuhlmann, Salma</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">We extend and generalize results of Scheiderer (2006) on the representation of polynomials nonnegative on two-dimensional basic closed semialgebraic sets. Our extension covers some situations where the defining polynomials do not satisfy the transversality condition. Such situations arise naturally when one considers semialgebraic sets invariant under finite group actions.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Marshall, Murray</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-15T08:56:15Z</dc:date>
    <dc:contributor>Marshall, Murray</dc:contributor>
    <dc:creator>Kuhlmann, Salma</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-15T08:56:15Z</dcterms:available>
    <dcterms:bibliographicCitation>First publ. in: Advances in Geometry 10 (2010), 1, pp. 135-143</dcterms:bibliographicCitation>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12752"/>
    <dc:creator>Cimprič, Jaka</dc:creator>
    <dcterms:issued>2010</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Cimprič, Jaka</dc:contributor>
    <dcterms:title>Positivity in power series rings</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed