Positivity in power series rings
Positivity in power series rings
No Thumbnail Available
Files
There are no files associated with this item.
Date
2010
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Advances in Geometry ; 10 (2010), 1. - ISSN 1615-715X
Abstract
We extend and generalize results of Scheiderer (2006) on the representation of polynomials nonnegative on two-dimensional basic closed semialgebraic sets. Our extension covers some situations where the defining polynomials do not satisfy the transversality condition. Such situations arise naturally when one considers semialgebraic sets invariant under finite group actions.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
CIMPRIČ, Jaka, Murray MARSHALL, Salma KUHLMANN, 2010. Positivity in power series rings. In: Advances in Geometry. 10(1). ISSN 1615-715X. Available under: doi: 10.1515/ADVGEOM.2009.036BibTex
@article{Cimpric2010Posit-12752, year={2010}, doi={10.1515/ADVGEOM.2009.036}, title={Positivity in power series rings}, number={1}, volume={10}, issn={1615-715X}, journal={Advances in Geometry}, author={Cimprič, Jaka and Marshall, Murray and Kuhlmann, Salma} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12752"> <dc:contributor>Kuhlmann, Salma</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">We extend and generalize results of Scheiderer (2006) on the representation of polynomials nonnegative on two-dimensional basic closed semialgebraic sets. Our extension covers some situations where the defining polynomials do not satisfy the transversality condition. Such situations arise naturally when one considers semialgebraic sets invariant under finite group actions.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dc:creator>Marshall, Murray</dc:creator> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-15T08:56:15Z</dc:date> <dc:contributor>Marshall, Murray</dc:contributor> <dc:creator>Kuhlmann, Salma</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-15T08:56:15Z</dcterms:available> <dcterms:bibliographicCitation>First publ. in: Advances in Geometry 10 (2010), 1, pp. 135-143</dcterms:bibliographicCitation> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12752"/> <dc:creator>Cimprič, Jaka</dc:creator> <dcterms:issued>2010</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Cimprič, Jaka</dc:contributor> <dcterms:title>Positivity in power series rings</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes