Positivity in power series rings
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2010
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Advances in Geometry. 2010, 10(1). ISSN 1615-715X. Available under: doi: 10.1515/ADVGEOM.2009.036
Zusammenfassung
We extend and generalize results of Scheiderer (2006) on the representation of polynomials nonnegative on two-dimensional basic closed semialgebraic sets. Our extension covers some situations where the defining polynomials do not satisfy the transversality condition. Such situations arise naturally when one considers semialgebraic sets invariant under finite group actions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
CIMPRIČ, Jaka, Murray MARSHALL, Salma KUHLMANN, 2010. Positivity in power series rings. In: Advances in Geometry. 2010, 10(1). ISSN 1615-715X. Available under: doi: 10.1515/ADVGEOM.2009.036BibTex
@article{Cimpric2010Posit-12752, year={2010}, doi={10.1515/ADVGEOM.2009.036}, title={Positivity in power series rings}, number={1}, volume={10}, issn={1615-715X}, journal={Advances in Geometry}, author={Cimprič, Jaka and Marshall, Murray and Kuhlmann, Salma} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12752"> <dc:contributor>Kuhlmann, Salma</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">We extend and generalize results of Scheiderer (2006) on the representation of polynomials nonnegative on two-dimensional basic closed semialgebraic sets. Our extension covers some situations where the defining polynomials do not satisfy the transversality condition. Such situations arise naturally when one considers semialgebraic sets invariant under finite group actions.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dc:creator>Marshall, Murray</dc:creator> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-15T08:56:15Z</dc:date> <dc:contributor>Marshall, Murray</dc:contributor> <dc:creator>Kuhlmann, Salma</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-15T08:56:15Z</dcterms:available> <dcterms:bibliographicCitation>First publ. in: Advances in Geometry 10 (2010), 1, pp. 135-143</dcterms:bibliographicCitation> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12752"/> <dc:creator>Cimprič, Jaka</dc:creator> <dcterms:issued>2010</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Cimprič, Jaka</dc:contributor> <dcterms:title>Positivity in power series rings</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja