High Performance Subgraph Mining in Molecular Compounds
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Structured data represented in the form of graphs arises in several fields of the science and the growing amount of available data makes distributed graph mining techniques particularly relevant. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiver-initiated, load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening dataset, where the approach attains close-to linear speedup in a network of workstations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DI FATTA, Giuseppe, Michael R. BERTHOLD, 2005. High Performance Subgraph Mining in Molecular Compounds. In: YANG, Laurence T., ed., Omer F. RANA, ed., Beniamino DI MARTINO, ed., Jack DONGARRA, ed.. High Performance Computing and Communications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 866-877. Lecture Notes in Computer Science. 3726. ISBN 978-3-540-29031-5. Available under: doi: 10.1007/11557654_97BibTex
@inproceedings{DiFatta2005Perfo-24044, year={2005}, doi={10.1007/11557654_97}, title={High Performance Subgraph Mining in Molecular Compounds}, number={3726}, isbn={978-3-540-29031-5}, publisher={Springer Berlin Heidelberg}, address={Berlin, Heidelberg}, series={Lecture Notes in Computer Science}, booktitle={High Performance Computing and Communications}, pages={866--877}, editor={Yang, Laurence T. and Rana, Omer F. and Di Martino, Beniamino and Dongarra, Jack}, author={Di Fatta, Giuseppe and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24044"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24044/1/Fatta_240449.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24044"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-25T09:56:43Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:bibliographicCitation>High performance computing and communications : First International Conference, HPCC 2005, Sorrento, Italy, September 21 - 23, 2005; proceedings / Laurence T. Yang ... (ed.). - Berlin [u.a.]: Springer, 2005. - S. 866-877. - (Lecture notes in computer science ; 3726). - ISBN 978-3-540-29031-5</dcterms:bibliographicCitation> <dc:creator>Di Fatta, Giuseppe</dc:creator> <dc:creator>Berthold, Michael R.</dc:creator> <dcterms:abstract xml:lang="eng">Structured data represented in the form of graphs arises in several fields of the science and the growing amount of available data makes distributed graph mining techniques particularly relevant. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiver-initiated, load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening dataset, where the approach attains close-to linear speedup in a network of workstations.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>High Performance Subgraph Mining in Molecular Compounds</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-25T09:56:43Z</dc:date> <dc:contributor>Di Fatta, Giuseppe</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:issued>2005</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24044/1/Fatta_240449.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>