Reduced-Order Bicriterial Optimal Control of Evolution Equations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this thesis, available results from previous master theses for a bicriterial optimal control problem governed by time-independent and a time-dependent convection-diffusion equation, respectively, are extended from the case of two space dimensions to three space dimensions and arising difficulties are investigated. These multiobjective optimal control problems are treated by the Euclidean reference point method and in this thesis, the focus is set on computing Pareto optimal solutions numerically. The step sizes used in the associated algorithm are considered more closely with regard to the speed of convergence for the individual reference point problems. By adapting certain step sizes, considerable improvement is achieved on this matter.
Furthermore, POD is employed as a method of model-order reduction while various POD basis strategies are analysed and refined. In particular, a-priori and a-posteriori estimates are applied to construct time efficient and sufficiently accurate strategies to determine the size of the POD basis. As tools to control the POD basis size, basis extensions and basis updates are employed.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SPURA, Felix, 2019. Reduced-Order Bicriterial Optimal Control of Evolution Equations [Master thesis]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Spura2019Reduc-45966, year={2019}, title={Reduced-Order Bicriterial Optimal Control of Evolution Equations}, address={Konstanz}, school={Universität Konstanz}, author={Spura, Felix} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45966"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Spura, Felix</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-06-11T09:25:05Z</dc:date> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45966/5/Spura_2-745t7ytk1rkn6.pdf"/> <dc:contributor>Spura, Felix</dc:contributor> <dcterms:issued>2019</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-06-11T09:25:05Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Reduced-Order Bicriterial Optimal Control of Evolution Equations</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45966"/> <dcterms:abstract xml:lang="eng">In this thesis, available results from previous master theses for a bicriterial optimal control problem governed by time-independent and a time-dependent convection-diffusion equation, respectively, are extended from the case of two space dimensions to three space dimensions and arising difficulties are investigated. These multiobjective optimal control problems are treated by the Euclidean reference point method and in this thesis, the focus is set on computing Pareto optimal solutions numerically. The step sizes used in the associated algorithm are considered more closely with regard to the speed of convergence for the individual reference point problems. By adapting certain step sizes, considerable improvement is achieved on this matter.<br />Furthermore, POD is employed as a method of model-order reduction while various POD basis strategies are analysed and refined. In particular, a-priori and a-posteriori estimates are applied to construct time efficient and sufficiently accurate strategies to determine the size of the POD basis. As tools to control the POD basis size, basis extensions and basis updates are employed.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45966/5/Spura_2-745t7ytk1rkn6.pdf"/> </rdf:Description> </rdf:RDF>