Invariance of Total Positivity of a Matrix under Entry-wise Perturbation and Completion Problems

Loading...
Thumbnail Image
Date
2016
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
A Panorama of Mathematics : Pure and Applied / da Fonseca, Carlos M. et al. (ed.). - Providence, Rhode Island : American Mathematical Society, 2016. - (Contemporary Mathematics ; 658). - pp. 115-126. - ISSN 0271-4132. - eISSN 1098-3627. - ISBN 978-1-4704-1668-3
Abstract
A totally positive matrix is a matrix having all its minors positive.The largest amount by which the single entries of such a matrix can be perturbed without losing the property of total positivity is given. Also some completion problems for totally positive matrices are investigated.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Conference Mathematics and its Applications, Nov 14, 2014 - Nov 17, 2014, Safat, Kuwait
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690ADM, Mohammad, Jürgen GARLOFF, 2016. Invariance of Total Positivity of a Matrix under Entry-wise Perturbation and Completion Problems. Conference Mathematics and its Applications. Safat, Kuwait, Nov 14, 2014 - Nov 17, 2014. In: DA FONSECA, Carlos M., ed. and others. A Panorama of Mathematics : Pure and Applied. Providence, Rhode Island:American Mathematical Society, pp. 115-126. ISSN 0271-4132. eISSN 1098-3627. ISBN 978-1-4704-1668-3. Available under: doi: 10.1090/conm/658
BibTex
@inproceedings{Adm2016Invar-31461,
  year={2016},
  doi={10.1090/conm/658},
  title={Invariance of Total Positivity of a Matrix under Entry-wise Perturbation and Completion Problems},
  number={658},
  isbn={978-1-4704-1668-3},
  issn={0271-4132},
  publisher={American Mathematical Society},
  address={Providence, Rhode Island},
  series={Contemporary Mathematics},
  booktitle={A Panorama of Mathematics : Pure and Applied},
  pages={115--126},
  editor={da Fonseca, Carlos M.},
  author={Adm, Mohammad and Garloff, Jürgen}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31461">
    <dcterms:title>Invariance of Total Positivity of a Matrix under Entry-wise Perturbation and Completion Problems</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2016</dcterms:issued>
    <dc:creator>Adm, Mohammad</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:contributor>Adm, Mohammad</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-16T14:14:57Z</dcterms:available>
    <dc:creator>Garloff, Jürgen</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31461/1/Adm_0-387085.pdf"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/31461"/>
    <dcterms:abstract xml:lang="eng">A totally positive matrix is a matrix having all its minors positive.The largest amount by which the single entries of such a matrix can be perturbed without losing the property of total positivity is given. Also some completion problems for totally positive matrices are investigated.</dcterms:abstract>
    <dc:contributor>Garloff, Jürgen</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31461/1/Adm_0-387085.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-16T14:14:57Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed

Version History

Now showing 1 - 2 of 2
VersionDateSummary
2*
2017-01-16 14:07:41
2015-07-21 08:13:20
* Selected version