Patent Retrieval : A Multi-Modal Visual Analytics Approach

Lade...
Vorschaubild
Dateien
Seebacher_2-5ub10vls1u6r0.pdf
Seebacher_2-5ub10vls1u6r0.pdfGröße: 174.71 KBDownloads: 214
Datum
2016
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
NATALIA ANDRIENKO, , ed., MICHAEL SEDLMAIR, ed.. EuroVA16. The Eurographics Association, 2016, 1118. ISBN 978-3-03868-016-1. Available under: doi: 10.2312/eurova.20161118
Zusammenfassung

Claiming intellectual property for an invention by patents is a common way to protect ideas and technological advancements. However, patents allow only the protection of new ideas. Assessing the novelty of filed patent applications is a very time-consuming, yet crucial manual task. Current patent retrieval systems do not make use of all available data and do not explain the similarity between patents. We support patent officials by an enhanced Visual Analytics multi-modal patent retrieval system. Including various similarity measurements and incorporating user feedback, we are able to achieve significantly better query results than state-of-the-art methods.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Patent Retrieval, Visual Analytics
Konferenz
EuroVA: International Workshop on Visual Analytics, 6. Juni 2016 - 10. Juni 2016, Groningen, the Netherlands
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SEEBACHER, Daniel, Manuel STEIN, Halldor JANETZKO, Daniel A. KEIM, 2016. Patent Retrieval : A Multi-Modal Visual Analytics Approach. EuroVA: International Workshop on Visual Analytics. Groningen, the Netherlands, 6. Juni 2016 - 10. Juni 2016. In: NATALIA ANDRIENKO, , ed., MICHAEL SEDLMAIR, ed.. EuroVA16. The Eurographics Association, 2016, 1118. ISBN 978-3-03868-016-1. Available under: doi: 10.2312/eurova.20161118
BibTex
@inproceedings{Seebacher2016Paten-36920,
  year={2016},
  doi={10.2312/eurova.20161118},
  title={Patent Retrieval : A Multi-Modal Visual Analytics Approach},
  isbn={978-3-03868-016-1},
  publisher={The Eurographics Association},
  booktitle={EuroVA16},
  editor={Natalia Andrienko and Michael Sedlmair},
  author={Seebacher, Daniel and Stein, Manuel and Janetzko, Halldor and Keim, Daniel A.},
  note={Article Number: 1118}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36920">
    <dc:contributor>Stein, Manuel</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-24T11:36:03Z</dcterms:available>
    <dcterms:title>Patent Retrieval : A Multi-Modal Visual Analytics Approach</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/36920/1/Seebacher_2-5ub10vls1u6r0.pdf"/>
    <dcterms:abstract xml:lang="eng">Claiming intellectual property for an invention by patents is a common way to protect ideas and technological advancements. However, patents allow only the protection of new ideas. Assessing the novelty of filed patent applications is a very time-consuming, yet crucial manual task. Current patent retrieval systems do not make use of all available data and do not explain the similarity between patents. We support patent officials by an enhanced Visual Analytics multi-modal patent retrieval system. Including various similarity measurements and incorporating user feedback, we are able to achieve significantly better query results than state-of-the-art methods.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-24T11:36:03Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/36920/1/Seebacher_2-5ub10vls1u6r0.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Stein, Manuel</dc:creator>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:issued>2016</dcterms:issued>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36920"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen