Publikation:

Patent Retrieval : A Multi-Modal Visual Analytics Approach

Lade...
Vorschaubild

Dateien

Seebacher_2-5ub10vls1u6r0.pdf
Seebacher_2-5ub10vls1u6r0.pdfGröße: 174.71 KBDownloads: 234

Datum

2016

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

NATALIA ANDRIENKO, , ed., MICHAEL SEDLMAIR, ed.. EuroVA16. The Eurographics Association, 2016, 1118. ISBN 978-3-03868-016-1. Available under: doi: 10.2312/eurova.20161118

Zusammenfassung

Claiming intellectual property for an invention by patents is a common way to protect ideas and technological advancements. However, patents allow only the protection of new ideas. Assessing the novelty of filed patent applications is a very time-consuming, yet crucial manual task. Current patent retrieval systems do not make use of all available data and do not explain the similarity between patents. We support patent officials by an enhanced Visual Analytics multi-modal patent retrieval system. Including various similarity measurements and incorporating user feedback, we are able to achieve significantly better query results than state-of-the-art methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Patent Retrieval, Visual Analytics

Konferenz

EuroVA: International Workshop on Visual Analytics, 6. Juni 2016 - 10. Juni 2016, Groningen, the Netherlands
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690SEEBACHER, Daniel, Manuel STEIN, Halldor JANETZKO, Daniel A. KEIM, 2016. Patent Retrieval : A Multi-Modal Visual Analytics Approach. EuroVA: International Workshop on Visual Analytics. Groningen, the Netherlands, 6. Juni 2016 - 10. Juni 2016. In: NATALIA ANDRIENKO, , ed., MICHAEL SEDLMAIR, ed.. EuroVA16. The Eurographics Association, 2016, 1118. ISBN 978-3-03868-016-1. Available under: doi: 10.2312/eurova.20161118
BibTex
@inproceedings{Seebacher2016Paten-36920,
  year={2016},
  doi={10.2312/eurova.20161118},
  title={Patent Retrieval : A Multi-Modal Visual Analytics Approach},
  isbn={978-3-03868-016-1},
  publisher={The Eurographics Association},
  booktitle={EuroVA16},
  editor={Natalia Andrienko and Michael Sedlmair},
  author={Seebacher, Daniel and Stein, Manuel and Janetzko, Halldor and Keim, Daniel A.},
  note={Article Number: 1118}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36920">
    <dc:contributor>Stein, Manuel</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-24T11:36:03Z</dcterms:available>
    <dcterms:title>Patent Retrieval : A Multi-Modal Visual Analytics Approach</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/36920/1/Seebacher_2-5ub10vls1u6r0.pdf"/>
    <dcterms:abstract xml:lang="eng">Claiming intellectual property for an invention by patents is a common way to protect ideas and technological advancements. However, patents allow only the protection of new ideas. Assessing the novelty of filed patent applications is a very time-consuming, yet crucial manual task. Current patent retrieval systems do not make use of all available data and do not explain the similarity between patents. We support patent officials by an enhanced Visual Analytics multi-modal patent retrieval system. Including various similarity measurements and incorporating user feedback, we are able to achieve significantly better query results than state-of-the-art methods.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-24T11:36:03Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/36920/1/Seebacher_2-5ub10vls1u6r0.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Stein, Manuel</dc:creator>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:issued>2016</dcterms:issued>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36920"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen