Publikation: Adaptive reduced basis trust region methods for parameter identification problems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): VO 1658/6-1
Deutsche Forschungsgemeinschaft (DFG): EXC 2044 39068558
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this contribution, we are concerned with model order reduction in the context of iterative regularization methods for the solution of inverse problems arising from parameter identification in elliptic partial differential equations. Such methods typically require a large number of forward solutions, which makes the use of the reduced basis method attractive to reduce computational complexity. However, the considered inverse problems are typically ill-posed due to their infinite-dimensional parameter space. Moreover, the infinite-dimensional parameter space makes it impossible to build and certify classical reduced-order models efficiently in a so-called “offline phase”. We thus propose a new algorithm that adaptively builds a reduced parameter space in the online phase. The enrichment of the reduced parameter space is naturally inherited from the Tikhonov regularization within an iteratively regularized Gauß-Newton method. Finally, the adaptive parameter space reduction is combined with a certified reduced basis state space reduction within an adaptive error-aware trust region framework. Numerical experiments are presented to show the efficiency of the combined parameter and state space reduction for inverse parameter identification problems with distributed reaction or diffusion coefficients.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KARTMANN, Michael, Tim KEIL, Mario OHLBERGER, Stefan VOLKWEIN, Barbara KALTENBACHER, 2024. Adaptive reduced basis trust region methods for parameter identification problems. In: Computational Science and Engineering. Springer. 2024, 1(1), 3. eISSN 2948-1597. Verfügbar unter: doi: 10.1007/s44207-024-00002-zBibTex
@article{Kartmann2024-09-23Adapt-71864, year={2024}, doi={10.1007/s44207-024-00002-z}, title={Adaptive reduced basis trust region methods for parameter identification problems}, number={1}, volume={1}, journal={Computational Science and Engineering}, author={Kartmann, Michael and Keil, Tim and Ohlberger, Mario and Volkwein, Stefan and Kaltenbacher, Barbara}, note={Article Number: 3} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71864"> <dc:creator>Volkwein, Stefan</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71864"/> <dc:language>eng</dc:language> <dcterms:abstract>In this contribution, we are concerned with model order reduction in the context of iterative regularization methods for the solution of inverse problems arising from parameter identification in elliptic partial differential equations. Such methods typically require a large number of forward solutions, which makes the use of the reduced basis method attractive to reduce computational complexity. However, the considered inverse problems are typically ill-posed due to their infinite-dimensional parameter space. Moreover, the infinite-dimensional parameter space makes it impossible to build and certify classical reduced-order models efficiently in a so-called “offline phase”. We thus propose a new algorithm that adaptively builds a reduced parameter space in the online phase. The enrichment of the reduced parameter space is naturally inherited from the Tikhonov regularization within an iteratively regularized Gauß-Newton method. Finally, the adaptive parameter space reduction is combined with a certified reduced basis state space reduction within an adaptive error-aware trust region framework. Numerical experiments are presented to show the efficiency of the combined parameter and state space reduction for inverse parameter identification problems with distributed reaction or diffusion coefficients.</dcterms:abstract> <dc:creator>Keil, Tim</dc:creator> <dc:creator>Ohlberger, Mario</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Kartmann, Michael</dc:creator> <dc:contributor>Ohlberger, Mario</dc:contributor> <dc:contributor>Kaltenbacher, Barbara</dc:contributor> <dc:contributor>Kartmann, Michael</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71864/4/Kartmann_2-5ifw04b5879m6.pdf"/> <dcterms:title>Adaptive reduced basis trust region methods for parameter identification problems</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71864/4/Kartmann_2-5ifw04b5879m6.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-14T10:30:32Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-14T10:30:32Z</dcterms:available> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Volkwein, Stefan</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:issued>2024-09-23</dcterms:issued> <dc:contributor>Keil, Tim</dc:contributor> <dc:creator>Kaltenbacher, Barbara</dc:creator> </rdf:Description> </rdf:RDF>