Publikation: Distinguishing phases using the dynamical response of driven-dissipative light-matter systems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a peculiar transition triggered by infinitesimal dissipation in the interpolating Dicke-Tavis-Cummings model. The model describes a ubiquitous light-matter setting using a collection of two-level systems interacting with quantum light trapped in an optical cavity. In a previous work [Phys. Rev. Lett. 120, 183603 (2018)], dissipation was shown to extend a normal phase (dark state) into new regions of the model's parameter space. Harnessing Keldysh's action formalism to compute the response function of the light, we show that the normal phase does not merely spread but encompasses a transition between the old and the dissipation-stabilized regimes of the normal phase. This transition, however, solely manifests in the dynamical fluctuations atop the empty cavity, through stabilization of an excited state of the closed system. Consequently, we reveal that the fluctuations flip from being particlelike to holelike across this transition. This inversion is also accompanied by the behavior of the Liouvillian eigenvalues akin to exceptional points. Our work forges the way to discovering transitions in a wide variety of driven-dissipative systems and is highly pertinent for current experiments.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SORIENTE, Matteo, Ramasubramanian CHITRA, Oded ZILBERBERG, 2020. Distinguishing phases using the dynamical response of driven-dissipative light-matter systems. In: Physical Review A. American Physical Society (APS). 2020, 101(2), 023823. ISSN 2469-9926. eISSN 2469-9934. Available under: doi: 10.1103/PhysRevA.101.023823BibTex
@article{Soriente2020Disti-54906, year={2020}, doi={10.1103/PhysRevA.101.023823}, title={Distinguishing phases using the dynamical response of driven-dissipative light-matter systems}, number={2}, volume={101}, issn={2469-9926}, journal={Physical Review A}, author={Soriente, Matteo and Chitra, Ramasubramanian and Zilberberg, Oded}, note={Article Number: 023823} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54906"> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Soriente, Matteo</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-21T07:37:59Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-21T07:37:59Z</dc:date> <dc:creator>Zilberberg, Oded</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54906"/> <dcterms:issued>2020</dcterms:issued> <dc:contributor>Zilberberg, Oded</dc:contributor> <dcterms:abstract xml:lang="eng">We present a peculiar transition triggered by infinitesimal dissipation in the interpolating Dicke-Tavis-Cummings model. The model describes a ubiquitous light-matter setting using a collection of two-level systems interacting with quantum light trapped in an optical cavity. In a previous work [Phys. Rev. Lett. 120, 183603 (2018)], dissipation was shown to extend a normal phase (dark state) into new regions of the model's parameter space. Harnessing Keldysh's action formalism to compute the response function of the light, we show that the normal phase does not merely spread but encompasses a transition between the old and the dissipation-stabilized regimes of the normal phase. This transition, however, solely manifests in the dynamical fluctuations atop the empty cavity, through stabilization of an excited state of the closed system. Consequently, we reveal that the fluctuations flip from being particlelike to holelike across this transition. This inversion is also accompanied by the behavior of the Liouvillian eigenvalues akin to exceptional points. Our work forges the way to discovering transitions in a wide variety of driven-dissipative systems and is highly pertinent for current experiments.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Chitra, Ramasubramanian</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Soriente, Matteo</dc:creator> <dc:creator>Chitra, Ramasubramanian</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Distinguishing phases using the dynamical response of driven-dissipative light-matter systems</dcterms:title> </rdf:Description> </rdf:RDF>