Collective Perception of Environmental Features in a Robot Swarm

Lade...
Vorschaubild
Dateien
Valentini_2-3jq4w629qmt77.pdf
Valentini_2-3jq4w629qmt77.pdfGröße: 608.41 KBDownloads: 4
Datum
2016
Autor:innen
Valentini, Gabriele
Brambilla, Davide
Dorigo, Marco
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
DORIGO, Marco, ed., Mauro BIRATTARI, ed., Xiaodong LI, ed., Manuel LÓPEZ-IBÁÑEZ, ed., Kazuhiro OHKURA, ed., Carlo PINCIROLI, ed., Thomas STÜTZLE, ed.. Swarm Intelligence : 10th International Conference, ANTS 2016, Brussels, Belgium, September 7-9, 2016, Proceedings. Cham: Springer, 2016, pp. 65-76. Lecture Notes in Computer Science. 9882. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-44426-0. Available under: doi: 10.1007/978-3-319-44427-7_6
Zusammenfassung

In order to be effective, collective decision-making strategies need to be not only fast and accurate, but sufficiently general to be ported and reused across different problem domains. In this paper, we propose a novel problem scenario, collective perception, and use it to compare three different strategies: the DMMD, DMVD, and DC strategies. The robots are required to explore their environment, estimate the frequency of certain features, and collectively perceive which feature is the most frequent. We implemented the collective perception scenario in a swarm robotics system composed of 20 e-pucks and performed robot experiments with all considered strategies. Additionally, we also deepened our study by means of physics-based simulations. The results of our performance comparison in the collective perception scenario are in agreement with previous results for a different problem domain and support the generality of the considered strategies.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Quality Estimate, Dissemination State, Voter Model, Exploration State, Swarm Size
Konferenz
ANTS 2016 : 10th International Conference on Swarm Intellingence, 7. Sept. 2016 - 9. Sept. 2016, Brussels, Belgium
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690VALENTINI, Gabriele, Davide BRAMBILLA, Heiko HAMANN, Marco DORIGO, 2016. Collective Perception of Environmental Features in a Robot Swarm. ANTS 2016 : 10th International Conference on Swarm Intellingence. Brussels, Belgium, 7. Sept. 2016 - 9. Sept. 2016. In: DORIGO, Marco, ed., Mauro BIRATTARI, ed., Xiaodong LI, ed., Manuel LÓPEZ-IBÁÑEZ, ed., Kazuhiro OHKURA, ed., Carlo PINCIROLI, ed., Thomas STÜTZLE, ed.. Swarm Intelligence : 10th International Conference, ANTS 2016, Brussels, Belgium, September 7-9, 2016, Proceedings. Cham: Springer, 2016, pp. 65-76. Lecture Notes in Computer Science. 9882. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-44426-0. Available under: doi: 10.1007/978-3-319-44427-7_6
BibTex
@inproceedings{Valentini2016Colle-66016,
  year={2016},
  doi={10.1007/978-3-319-44427-7_6},
  title={Collective Perception of Environmental Features in a Robot Swarm},
  number={9882},
  isbn={978-3-319-44426-0},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Swarm Intelligence : 10th International Conference, ANTS 2016, Brussels, Belgium, September 7-9, 2016, Proceedings},
  pages={65--76},
  editor={Dorigo, Marco and Birattari, Mauro and Li, Xiaodong and López-Ibáñez, Manuel and Ohkura, Kazuhiro and Pinciroli, Carlo and Stützle, Thomas},
  author={Valentini, Gabriele and Brambilla, Davide and Hamann, Heiko and Dorigo, Marco}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66016">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Collective Perception of Environmental Features in a Robot Swarm</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66016/1/Valentini_2-3jq4w629qmt77.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66016"/>
    <dc:contributor>Valentini, Gabriele</dc:contributor>
    <dc:contributor>Dorigo, Marco</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66016/1/Valentini_2-3jq4w629qmt77.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dc:creator>Brambilla, Davide</dc:creator>
    <dc:creator>Dorigo, Marco</dc:creator>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dc:contributor>Brambilla, Davide</dc:contributor>
    <dc:creator>Valentini, Gabriele</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-09T12:26:25Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-09T12:26:25Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">In order to be effective, collective decision-making strategies need to be not only fast and accurate, but sufficiently general to be ported and reused across different problem domains. In this paper, we propose a novel problem scenario, collective perception, and use it to compare three different strategies: the DMMD, DMVD, and DC strategies. The robots are required to explore their environment, estimate the frequency of certain features, and collectively perceive which feature is the most frequent. We implemented the collective perception scenario in a swarm robotics system composed of 20 e-pucks and performed robot experiments with all considered strategies. Additionally, we also deepened our study by means of physics-based simulations. The results of our performance comparison in the collective perception scenario are in agreement with previous results for a different problem domain and support the generality of the considered strategies.</dcterms:abstract>
    <dcterms:issued>2016</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen