Collective Perception of Environmental Features in a Robot Swarm

No Thumbnail Available
Files
There are no files associated with this item.
Date
2016
Authors
Valentini, Gabriele
Brambilla, Davide
Dorigo, Marco
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Swarm Intelligence : 10th International Conference, ANTS 2016, Brussels, Belgium, September 7-9, 2016, Proceedings / Dorigo, Marco; Birattari, Mauro; Li, Xiaodong; López-Ibáñez, Manuel; Ohkura, Kazuhiro; Pinciroli, Carlo; Stützle, Thomas (ed.). - Cham : Springer, 2016. - (Lecture Notes in Computer Science ; 9882). - pp. 65-76. - ISSN 0302-9743. - eISSN 1611-3349. - ISBN 978-3-319-44426-0
Abstract
In order to be effective, collective decision-making strategies need to be not only fast and accurate, but sufficiently general to be ported and reused across different problem domains. In this paper, we propose a novel problem scenario, collective perception, and use it to compare three different strategies: the DMMD, DMVD, and DC strategies. The robots are required to explore their environment, estimate the frequency of certain features, and collectively perceive which feature is the most frequent. We implemented the collective perception scenario in a swarm robotics system composed of 20 e-pucks and performed robot experiments with all considered strategies. Additionally, we also deepened our study by means of physics-based simulations. The results of our performance comparison in the collective perception scenario are in agreement with previous results for a different problem domain and support the generality of the considered strategies.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Quality Estimate, Dissemination State, Voter Model, Exploration State, Swarm Size
Conference
ANTS 2016 : 10th International Conference on Swarm Intellingence, Sep 7, 2016 - Sep 9, 2016, Brussels, Belgium
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690VALENTINI, Gabriele, Davide BRAMBILLA, Heiko HAMANN, Marco DORIGO, 2016. Collective Perception of Environmental Features in a Robot Swarm. ANTS 2016 : 10th International Conference on Swarm Intellingence. Brussels, Belgium, Sep 7, 2016 - Sep 9, 2016. In: DORIGO, Marco, ed., Mauro BIRATTARI, ed., Xiaodong LI, ed., Manuel LÓPEZ-IBÁÑEZ, ed., Kazuhiro OHKURA, ed., Carlo PINCIROLI, ed., Thomas STÜTZLE, ed.. Swarm Intelligence : 10th International Conference, ANTS 2016, Brussels, Belgium, September 7-9, 2016, Proceedings. Cham:Springer, pp. 65-76. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-44426-0. Available under: doi: 10.1007/978-3-319-44427-7_6
BibTex
@inproceedings{Valentini2016Colle-66016,
  year={2016},
  doi={10.1007/978-3-319-44427-7_6},
  title={Collective Perception of Environmental Features in a Robot Swarm},
  number={9882},
  isbn={978-3-319-44426-0},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Swarm Intelligence : 10th International Conference, ANTS 2016, Brussels, Belgium, September 7-9, 2016, Proceedings},
  pages={65--76},
  editor={Dorigo, Marco and Birattari, Mauro and Li, Xiaodong and López-Ibáñez, Manuel and Ohkura, Kazuhiro and Pinciroli, Carlo and Stützle, Thomas},
  author={Valentini, Gabriele and Brambilla, Davide and Hamann, Heiko and Dorigo, Marco}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66016">
    <dcterms:title>Collective Perception of Environmental Features in a Robot Swarm</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66016"/>
    <dc:contributor>Valentini, Gabriele</dc:contributor>
    <dc:contributor>Dorigo, Marco</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dc:creator>Brambilla, Davide</dc:creator>
    <dc:creator>Dorigo, Marco</dc:creator>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dc:contributor>Brambilla, Davide</dc:contributor>
    <dc:creator>Valentini, Gabriele</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-09T12:26:25Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-09T12:26:25Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">In order to be effective, collective decision-making strategies need to be not only fast and accurate, but sufficiently general to be ported and reused across different problem domains. In this paper, we propose a novel problem scenario, collective perception, and use it to compare three different strategies: the DMMD, DMVD, and DC strategies. The robots are required to explore their environment, estimate the frequency of certain features, and collectively perceive which feature is the most frequent. We implemented the collective perception scenario in a swarm robotics system composed of 20 e-pucks and performed robot experiments with all considered strategies. Additionally, we also deepened our study by means of physics-based simulations. The results of our performance comparison in the collective perception scenario are in agreement with previous results for a different problem domain and support the generality of the considered strategies.</dcterms:abstract>
    <dcterms:issued>2016</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Refereed