Publikation:

Collective Perception of Environmental Features in a Robot Swarm

Lade...
Vorschaubild

Dateien

Valentini_2-3jq4w629qmt77.pdf
Valentini_2-3jq4w629qmt77.pdfGröße: 608.41 KBDownloads: 15

Datum

2016

Autor:innen

Valentini, Gabriele
Brambilla, Davide
Dorigo, Marco

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

DORIGO, Marco, ed., Mauro BIRATTARI, ed., Xiaodong LI, ed., Manuel LÓPEZ-IBÁÑEZ, ed., Kazuhiro OHKURA, ed., Carlo PINCIROLI, ed., Thomas STÜTZLE, ed.. Swarm Intelligence : 10th International Conference, ANTS 2016, Brussels, Belgium, September 7-9, 2016, Proceedings. Cham: Springer, 2016, pp. 65-76. Lecture Notes in Computer Science. 9882. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-44426-0. Available under: doi: 10.1007/978-3-319-44427-7_6

Zusammenfassung

In order to be effective, collective decision-making strategies need to be not only fast and accurate, but sufficiently general to be ported and reused across different problem domains. In this paper, we propose a novel problem scenario, collective perception, and use it to compare three different strategies: the DMMD, DMVD, and DC strategies. The robots are required to explore their environment, estimate the frequency of certain features, and collectively perceive which feature is the most frequent. We implemented the collective perception scenario in a swarm robotics system composed of 20 e-pucks and performed robot experiments with all considered strategies. Additionally, we also deepened our study by means of physics-based simulations. The results of our performance comparison in the collective perception scenario are in agreement with previous results for a different problem domain and support the generality of the considered strategies.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Quality Estimate, Dissemination State, Voter Model, Exploration State, Swarm Size

Konferenz

ANTS 2016 : 10th International Conference on Swarm Intellingence, 7. Sept. 2016 - 9. Sept. 2016, Brussels, Belgium
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690VALENTINI, Gabriele, Davide BRAMBILLA, Heiko HAMANN, Marco DORIGO, 2016. Collective Perception of Environmental Features in a Robot Swarm. ANTS 2016 : 10th International Conference on Swarm Intellingence. Brussels, Belgium, 7. Sept. 2016 - 9. Sept. 2016. In: DORIGO, Marco, ed., Mauro BIRATTARI, ed., Xiaodong LI, ed., Manuel LÓPEZ-IBÁÑEZ, ed., Kazuhiro OHKURA, ed., Carlo PINCIROLI, ed., Thomas STÜTZLE, ed.. Swarm Intelligence : 10th International Conference, ANTS 2016, Brussels, Belgium, September 7-9, 2016, Proceedings. Cham: Springer, 2016, pp. 65-76. Lecture Notes in Computer Science. 9882. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-44426-0. Available under: doi: 10.1007/978-3-319-44427-7_6
BibTex
@inproceedings{Valentini2016Colle-66016,
  year={2016},
  doi={10.1007/978-3-319-44427-7_6},
  title={Collective Perception of Environmental Features in a Robot Swarm},
  number={9882},
  isbn={978-3-319-44426-0},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Swarm Intelligence : 10th International Conference, ANTS 2016, Brussels, Belgium, September 7-9, 2016, Proceedings},
  pages={65--76},
  editor={Dorigo, Marco and Birattari, Mauro and Li, Xiaodong and López-Ibáñez, Manuel and Ohkura, Kazuhiro and Pinciroli, Carlo and Stützle, Thomas},
  author={Valentini, Gabriele and Brambilla, Davide and Hamann, Heiko and Dorigo, Marco}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66016">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Collective Perception of Environmental Features in a Robot Swarm</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66016/1/Valentini_2-3jq4w629qmt77.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66016"/>
    <dc:contributor>Valentini, Gabriele</dc:contributor>
    <dc:contributor>Dorigo, Marco</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66016/1/Valentini_2-3jq4w629qmt77.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dc:creator>Brambilla, Davide</dc:creator>
    <dc:creator>Dorigo, Marco</dc:creator>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dc:contributor>Brambilla, Davide</dc:contributor>
    <dc:creator>Valentini, Gabriele</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-09T12:26:25Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-09T12:26:25Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">In order to be effective, collective decision-making strategies need to be not only fast and accurate, but sufficiently general to be ported and reused across different problem domains. In this paper, we propose a novel problem scenario, collective perception, and use it to compare three different strategies: the DMMD, DMVD, and DC strategies. The robots are required to explore their environment, estimate the frequency of certain features, and collectively perceive which feature is the most frequent. We implemented the collective perception scenario in a swarm robotics system composed of 20 e-pucks and performed robot experiments with all considered strategies. Additionally, we also deepened our study by means of physics-based simulations. The results of our performance comparison in the collective perception scenario are in agreement with previous results for a different problem domain and support the generality of the considered strategies.</dcterms:abstract>
    <dcterms:issued>2016</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen