Publikation:

From Technical to Aesthetics Quality Assessment and Beyond : Challenges and Potential

Lade...
Vorschaubild

Dateien

Hosu_2-3gz5dg09sllp3.pdf
Hosu_2-3gz5dg09sllp3.pdfGröße: 75.5 KBDownloads: 399

Datum

2020

Autor:innen

Lin, Weisi
Cheng, Wen-Huang
See, John
Wong, Lai-Kuan

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

HOSU, Vlad, ed. and others. ATQAM/MAST'20: Joint Workshop on Aesthetic and Technical Quality Assessment of Multimedia and Media Analytics for Societal Trends. New York: ACM, 2020, pp. 19-20. ISBN 978-1-4503-8154-3. Available under: doi: 10.1145/3423268.3423589

Zusammenfassung

Every day 1.8+ billion images are being uploaded to Facebook, Instagram, Flickr, Snapchat, and WhatsApp [6]. The exponential growth of visual media has made quality assessment become increasingly important for various applications, from image acquisition, synthesis, restoration, and enhancement, to image search and retrieval, storage, and recognition. There have been two related but different classes of visual quality assessment techniques: image quality assessment (IQA) and image aesthetics assessment (IAA). As perceptual assessment tasks, subjective IQA and IAA share some common underlying factors that affect user judgments. Moreover, they are similar in methodology (especially NR-IQA in-the-wild and IAA). However, the emphasis for each is different: IQA focuses on low-level defects e.g. processing artefacts, noise, and blur, while IAA puts more emphasis on abstract and higher-level concepts that capture the subjective aesthetics experience, e.g. established photographic rules encompassing lighting, composition, and colors, and personalized factors such as personality, cultural background, age, and emotion. IQA has been studied extensively over the last decades [3, 14, 22]. There are three main types of IQA methods: full-reference (FR), reduced-reference (RR), and no-reference (NR). Among these, NRIQA is the most challenging as it does not depend on reference images or impose strict assumptions on the distortion types and level. NR-IQA techniques can be further divided into those that predict the global image score [1, 2, 10, 17, 26] and patch-based IQA [23, 25], naming a few of the more recent approaches.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

image quality assessment, image aesthetics assessment, IQA, IAA, potential, challenges

Konferenz

MM '20: The 28th ACM International Conference on Multimedia, 12. Okt. 2020 - 16. Okt. 2020, Seattle
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690HOSU, Vlad, Dietmar SAUPE, Bastian GOLDLÜCKE, Weisi LIN, Wen-Huang CHENG, John SEE, Lai-Kuan WONG, 2020. From Technical to Aesthetics Quality Assessment and Beyond : Challenges and Potential. MM '20: The 28th ACM International Conference on Multimedia. Seattle, 12. Okt. 2020 - 16. Okt. 2020. In: HOSU, Vlad, ed. and others. ATQAM/MAST'20: Joint Workshop on Aesthetic and Technical Quality Assessment of Multimedia and Media Analytics for Societal Trends. New York: ACM, 2020, pp. 19-20. ISBN 978-1-4503-8154-3. Available under: doi: 10.1145/3423268.3423589
BibTex
@inproceedings{Hosu2020Techn-51421,
  year={2020},
  doi={10.1145/3423268.3423589},
  title={From Technical to Aesthetics Quality Assessment and Beyond : Challenges and Potential},
  isbn={978-1-4503-8154-3},
  publisher={ACM},
  address={New York},
  booktitle={ATQAM/MAST'20: Joint Workshop on Aesthetic and Technical Quality Assessment of Multimedia and Media Analytics for Societal Trends},
  pages={19--20},
  editor={Hosu, Vlad},
  author={Hosu, Vlad and Saupe, Dietmar and Goldlücke, Bastian and Lin, Weisi and Cheng, Wen-Huang and See, John and Wong, Lai-Kuan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51421">
    <dc:creator>Hosu, Vlad</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51421/1/Hosu_2-3gz5dg09sllp3.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dc:creator>See, John</dc:creator>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>See, John</dc:contributor>
    <dc:contributor>Wong, Lai-Kuan</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51421/1/Hosu_2-3gz5dg09sllp3.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2020</dcterms:issued>
    <dc:creator>Wong, Lai-Kuan</dc:creator>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Cheng, Wen-Huang</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Cheng, Wen-Huang</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-19T13:37:22Z</dc:date>
    <dcterms:title>From Technical to Aesthetics Quality Assessment and Beyond : Challenges and Potential</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51421"/>
    <dc:contributor>Lin, Weisi</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-19T13:37:22Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">Every day 1.8+ billion images are being uploaded to Facebook, Instagram, Flickr, Snapchat, and WhatsApp [6]. The exponential growth of visual media has made quality assessment become increasingly important for various applications, from image acquisition, synthesis, restoration, and enhancement, to image search and retrieval, storage, and recognition. There have been two related but different classes of visual quality assessment techniques: image quality assessment (IQA) and image aesthetics assessment (IAA). As perceptual assessment tasks, subjective IQA and IAA share some common underlying factors that affect user judgments. Moreover, they are similar in methodology (especially NR-IQA in-the-wild and IAA). However, the emphasis for each is different: IQA focuses on low-level defects e.g. processing artefacts, noise, and blur, while IAA puts more emphasis on abstract and higher-level concepts that capture the subjective aesthetics experience, e.g. established photographic rules encompassing lighting, composition, and colors, and personalized factors such as personality, cultural background, age, and emotion. IQA has been studied extensively over the last decades [3, 14, 22]. There are three main types of IQA methods: full-reference (FR), reduced-reference (RR), and no-reference (NR). Among these, NRIQA is the most challenging as it does not depend on reference images or impose strict assumptions on the distortion types and level. NR-IQA techniques can be further divided into those that predict the global image score [1, 2, 10, 17, 26] and patch-based IQA [23, 25], naming a few of the more recent approaches.</dcterms:abstract>
    <dc:creator>Lin, Weisi</dc:creator>
    <dc:contributor>Hosu, Vlad</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen