Publikation: Non-uniqueness of energy-conservative solutions to the isentropic compressible two-dimensional Euler equations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider the 2-d isentropic compressible Euler equations. It was shown in [E. Chiodaroli, C. De Lellis and O. Kreml, Global ill-posedness of the isentropic system of gas dynamics, Comm. Pure Appl. Math. 68(7) (2015) 1157–1190] that there exist Riemann initial data as well as Lipschitz initial data for which there exist infinitely many weak solutions that fulfill an energy inequality. In this paper, we will prove that there is Riemann initial data for which there exist infinitely many weak solutions that conserve energy, i.e. they fulfill an energy equality. As in the aforementioned paper, we will also show that there even exist Lipschitz initial data with the same property.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KLINGENBERG, Christian, Simon MARKFELDER, 2018. Non-uniqueness of energy-conservative solutions to the isentropic compressible two-dimensional Euler equations. In: Journal of Hyperbolic Differential Equations. World Scientific. 2018, 15(4), S. 721-730. ISSN 0219-8916. eISSN 1793-6993. Verfügbar unter: doi: 10.1142/s0219891618500224BibTex
@article{Klingenberg2018-12Nonun-71650, year={2018}, doi={10.1142/s0219891618500224}, title={Non-uniqueness of energy-conservative solutions to the isentropic compressible two-dimensional Euler equations}, number={4}, volume={15}, issn={0219-8916}, journal={Journal of Hyperbolic Differential Equations}, pages={721--730}, author={Klingenberg, Christian and Markfelder, Simon} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71650"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-11T12:10:32Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Non-uniqueness of energy-conservative solutions to the isentropic compressible two-dimensional Euler equations</dcterms:title> <dcterms:issued>2018-12</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-11T12:10:32Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71650"/> <dc:creator>Markfelder, Simon</dc:creator> <dc:language>eng</dc:language> <dcterms:abstract>We consider the 2-d isentropic compressible Euler equations. It was shown in [E. Chiodaroli, C. De Lellis and O. Kreml, Global ill-posedness of the isentropic system of gas dynamics, Comm. Pure Appl. Math. 68(7) (2015) 1157–1190] that there exist Riemann initial data as well as Lipschitz initial data for which there exist infinitely many weak solutions that fulfill an energy inequality. In this paper, we will prove that there is Riemann initial data for which there exist infinitely many weak solutions that conserve energy, i.e. they fulfill an energy equality. As in the aforementioned paper, we will also show that there even exist Lipschitz initial data with the same property.</dcterms:abstract> <dc:contributor>Klingenberg, Christian</dc:contributor> <dc:creator>Klingenberg, Christian</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Markfelder, Simon</dc:contributor> </rdf:Description> </rdf:RDF>