Publikation:

Non-uniqueness of energy-conservative solutions to the isentropic compressible two-dimensional Euler equations

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Klingenberg, Christian

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Hyperbolic Differential Equations. World Scientific. 2018, 15(4), S. 721-730. ISSN 0219-8916. eISSN 1793-6993. Verfügbar unter: doi: 10.1142/s0219891618500224

Zusammenfassung

We consider the 2-d isentropic compressible Euler equations. It was shown in [E. Chiodaroli, C. De Lellis and O. Kreml, Global ill-posedness of the isentropic system of gas dynamics, Comm. Pure Appl. Math. 68(7) (2015) 1157–1190] that there exist Riemann initial data as well as Lipschitz initial data for which there exist infinitely many weak solutions that fulfill an energy inequality. In this paper, we will prove that there is Riemann initial data for which there exist infinitely many weak solutions that conserve energy, i.e. they fulfill an energy equality. As in the aforementioned paper, we will also show that there even exist Lipschitz initial data with the same property.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Non-uniqueness, Compressible Euler equations

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690KLINGENBERG, Christian, Simon MARKFELDER, 2018. Non-uniqueness of energy-conservative solutions to the isentropic compressible two-dimensional Euler equations. In: Journal of Hyperbolic Differential Equations. World Scientific. 2018, 15(4), S. 721-730. ISSN 0219-8916. eISSN 1793-6993. Verfügbar unter: doi: 10.1142/s0219891618500224
BibTex
@article{Klingenberg2018-12Nonun-71650,
  year={2018},
  doi={10.1142/s0219891618500224},
  title={Non-uniqueness of energy-conservative solutions to the isentropic compressible two-dimensional Euler equations},
  number={4},
  volume={15},
  issn={0219-8916},
  journal={Journal of Hyperbolic Differential Equations},
  pages={721--730},
  author={Klingenberg, Christian and Markfelder, Simon}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71650">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-11T12:10:32Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Non-uniqueness of energy-conservative solutions to the isentropic compressible two-dimensional Euler equations</dcterms:title>
    <dcterms:issued>2018-12</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-11T12:10:32Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71650"/>
    <dc:creator>Markfelder, Simon</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:abstract>We consider the 2-d isentropic compressible Euler equations. It was shown in [E. Chiodaroli, C. De Lellis and O. Kreml, Global ill-posedness of the isentropic system of gas dynamics, Comm. Pure Appl. Math. 68(7) (2015) 1157–1190] that there exist Riemann initial data as well as Lipschitz initial data for which there exist infinitely many weak solutions that fulfill an energy inequality. In this paper, we will prove that there is Riemann initial data for which there exist infinitely many weak solutions that conserve energy, i.e. they fulfill an energy equality. As in the aforementioned paper, we will also show that there even exist Lipschitz initial data with the same property.</dcterms:abstract>
    <dc:contributor>Klingenberg, Christian</dc:contributor>
    <dc:creator>Klingenberg, Christian</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Markfelder, Simon</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen