Publikation:

An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimization

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Keil, Tim
Ohlberger, Mario
Schindler, Felix

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In this contribution we device and analyze improved variants of the non-conforming dual approach for trust-region reduced basis (TR-RB) approximation of PDE-constrained parameter optimization that has recently been introduced in [Keil et al.. A non-conforming dual approach for adaptive Trust-Region Reduced Basis approximation of PDE-constrained optimization. arXiv:2006.09297, 2020]. The proposed methods use model order reduction techniques for parametrized PDEs to significantly reduce the computational demand of parameter optimization with PDE constraints in the context of large-scale or multi-scale applications. The adaptive TR approach allows to localize the reduction with respect to the parameter space along the path of optimization without wasting unnecessary resources in an offline phase. The improved variants employ projected Newton methods to solve the local optimization problems within each TR step to benefit from high convergence rates. This implies new strategies in constructing the RB spaces, together with an estimate for the approximation of the hessian. Moreover, we present a new proof of convergence of the TR-RB method based on infinite-dimensional arguments, not restricted to the particular case of an RB approximation and provide an a posteriori error estimate for the approximation of the optimal parameter. Numerical experiments demonstrate the efficiency of the proposed methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690BANHOLZER, Stefan, Tim KEIL, Luca MECHELLI, Mario OHLBERGER, Felix SCHINDLER, Stefan VOLKWEIN, 2020. An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimization
BibTex
@unpublished{Banholzer2020adapt-55475,
  year={2020},
  title={An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimization},
  author={Banholzer, Stefan and Keil, Tim and Mechelli, Luca and Ohlberger, Mario and Schindler, Felix and Volkwein, Stefan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55475">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Ohlberger, Mario</dc:contributor>
    <dc:creator>Keil, Tim</dc:creator>
    <dc:contributor>Volkwein, Stefan</dc:contributor>
    <dc:creator>Schindler, Felix</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T14:07:42Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T14:07:42Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Banholzer, Stefan</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Keil, Tim</dc:contributor>
    <dc:creator>Volkwein, Stefan</dc:creator>
    <dcterms:title>An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimization</dcterms:title>
    <dc:contributor>Banholzer, Stefan</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Mechelli, Luca</dc:contributor>
    <dcterms:issued>2020</dcterms:issued>
    <dc:contributor>Schindler, Felix</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55475"/>
    <dc:creator>Mechelli, Luca</dc:creator>
    <dcterms:abstract xml:lang="eng">In this contribution we device and analyze improved variants of the non-conforming dual approach for trust-region reduced basis (TR-RB) approximation of PDE-constrained parameter optimization that has recently been introduced in [Keil et al.. A non-conforming dual approach for adaptive Trust-Region Reduced Basis approximation of PDE-constrained optimization. arXiv:2006.09297, 2020]. The proposed methods use model order reduction techniques for parametrized PDEs to significantly reduce the computational demand of parameter optimization with PDE constraints in the context of large-scale or multi-scale applications. The adaptive TR approach allows to localize the reduction with respect to the parameter space along the path of optimization without wasting unnecessary resources in an offline phase. The improved variants employ projected Newton methods to solve the local optimization problems within each TR step to benefit from high convergence rates. This implies new strategies in constructing the RB spaces, together with an estimate for the approximation of the hessian. Moreover, we present a new proof of convergence of the TR-RB method based on infinite-dimensional arguments, not restricted to the particular case of an RB approximation and provide an a posteriori error estimate for the approximation of the optimal parameter. Numerical experiments demonstrate the efficiency of the proposed methods.</dcterms:abstract>
    <dc:creator>Ohlberger, Mario</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen