An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimization
An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimization
No Thumbnail Available
Files
There are no files associated with this item.
Date
2020
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Preprint
Publication status
Published
Published in
Abstract
In this contribution we device and analyze improved variants of the non-conforming dual approach for trust-region reduced basis (TR-RB) approximation of PDE-constrained parameter optimization that has recently been introduced in [Keil et al.. A non-conforming dual approach for adaptive Trust-Region Reduced Basis approximation of PDE-constrained optimization. arXiv:2006.09297, 2020]. The proposed methods use model order reduction techniques for parametrized PDEs to significantly reduce the computational demand of parameter optimization with PDE constraints in the context of large-scale or multi-scale applications. The adaptive TR approach allows to localize the reduction with respect to the parameter space along the path of optimization without wasting unnecessary resources in an offline phase. The improved variants employ projected Newton methods to solve the local optimization problems within each TR step to benefit from high convergence rates. This implies new strategies in constructing the RB spaces, together with an estimate for the approximation of the hessian. Moreover, we present a new proof of convergence of the TR-RB method based on infinite-dimensional arguments, not restricted to the particular case of an RB approximation and provide an a posteriori error estimate for the approximation of the optimal parameter. Numerical experiments demonstrate the efficiency of the proposed methods.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
BANHOLZER, Stefan, Tim KEIL, Luca MECHELLI, Mario OHLBERGER, Felix SCHINDLER, Stefan VOLKWEIN, 2020. An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimizationBibTex
@unpublished{Banholzer2020adapt-55475, year={2020}, title={An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimization}, author={Banholzer, Stefan and Keil, Tim and Mechelli, Luca and Ohlberger, Mario and Schindler, Felix and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55475"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Ohlberger, Mario</dc:contributor> <dc:creator>Keil, Tim</dc:creator> <dc:contributor>Volkwein, Stefan</dc:contributor> <dc:creator>Schindler, Felix</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T14:07:42Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T14:07:42Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Banholzer, Stefan</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Keil, Tim</dc:contributor> <dc:creator>Volkwein, Stefan</dc:creator> <dcterms:title>An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimization</dcterms:title> <dc:contributor>Banholzer, Stefan</dc:contributor> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Mechelli, Luca</dc:contributor> <dcterms:issued>2020</dcterms:issued> <dc:contributor>Schindler, Felix</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55475"/> <dc:creator>Mechelli, Luca</dc:creator> <dcterms:abstract xml:lang="eng">In this contribution we device and analyze improved variants of the non-conforming dual approach for trust-region reduced basis (TR-RB) approximation of PDE-constrained parameter optimization that has recently been introduced in [Keil et al.. A non-conforming dual approach for adaptive Trust-Region Reduced Basis approximation of PDE-constrained optimization. arXiv:2006.09297, 2020]. The proposed methods use model order reduction techniques for parametrized PDEs to significantly reduce the computational demand of parameter optimization with PDE constraints in the context of large-scale or multi-scale applications. The adaptive TR approach allows to localize the reduction with respect to the parameter space along the path of optimization without wasting unnecessary resources in an offline phase. The improved variants employ projected Newton methods to solve the local optimization problems within each TR step to benefit from high convergence rates. This implies new strategies in constructing the RB spaces, together with an estimate for the approximation of the hessian. Moreover, we present a new proof of convergence of the TR-RB method based on infinite-dimensional arguments, not restricted to the particular case of an RB approximation and provide an a posteriori error estimate for the approximation of the optimal parameter. Numerical experiments demonstrate the efficiency of the proposed methods.</dcterms:abstract> <dc:creator>Ohlberger, Mario</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes