dg2pix : Pixel-Based Visual Analysis of Dynamic Graphs

Loading...
Thumbnail Image
Date
2020
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
830892
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Proceedings of IEEE Visualization in Data Science (VDS). - Piscataway, NJ : IEEE, 2020. - pp. 32-41. - ISBN 978-1-72819-284-0
Abstract
Presenting long sequences of dynamic graphs remains challenging due to the underlying large-scale and high-dimensional data. We propose dg2pix, a novel pixel-based visualization technique, to visually explore temporal and structural properties in long sequences of large-scale graphs. The approach consists of three main steps: (1) the multiscale modeling of the temporal dimension; (2) unsupervised graph embeddings to learn low-dimensional representations of the dynamic graph data; and (3) an interactive pixel-based visualization to simultaneously explore the evolving data at different temporal aggregation scales. dg2pix provides a scalable overview of a dynamic graph, supports the exploration of long sequences of high-dimensional graph data, and enables the identification and comparison of similar temporal states. We show the applicability of the technique to synthetic and real-world datasets, demonstrating that temporal patterns in dynamic graphs can be identified and interpreted over time. dg2pix contributes a suitable intermediate representation between node-link diagrams at the high detail end and matrix representations on the low detail end.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
IEEE Visualization in Data Science (VDS) (Virtual Conference), Oct 26, 2020, Salt Lake City, Utah
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690CAKMAK, Eren, Dominik JÄCKLE, Tobias SCHRECK, Daniel A. KEIM, 2020. dg2pix : Pixel-Based Visual Analysis of Dynamic Graphs. IEEE Visualization in Data Science (VDS) (Virtual Conference). Salt Lake City, Utah, Oct 26, 2020. In: Proceedings of IEEE Visualization in Data Science (VDS). Piscataway, NJ:IEEE, pp. 32-41. ISBN 978-1-72819-284-0. Available under: doi: 10.1109/VDS51726.2020.00008
BibTex
@inproceedings{Cakmak2020dg2pi-51036,
  year={2020},
  doi={10.1109/VDS51726.2020.00008},
  title={dg2pix : Pixel-Based Visual Analysis of Dynamic Graphs},
  isbn={978-1-72819-284-0},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={Proceedings of IEEE Visualization in Data Science (VDS)},
  pages={32--41},
  author={Cakmak, Eren and Jäckle, Dominik and Schreck, Tobias and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51036">
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Jäckle, Dominik</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51036"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">Presenting long sequences of dynamic graphs remains challenging due to the underlying large-scale and high-dimensional data. We propose dg2pix, a novel pixel-based visualization technique, to visually explore temporal and structural properties in long sequences of large-scale graphs. The approach consists of three main steps: (1) the multiscale modeling of the temporal dimension; (2) unsupervised graph embeddings to learn low-dimensional representations of the dynamic graph data; and (3) an interactive pixel-based visualization to simultaneously explore the evolving data at different temporal aggregation scales. dg2pix provides a scalable overview of a dynamic graph, supports the exploration of long sequences of high-dimensional graph data, and enables the identification and comparison of similar temporal states. We show the applicability of the technique to synthetic and real-world datasets, demonstrating that temporal patterns in dynamic graphs can be identified and interpreted over time. dg2pix contributes a suitable intermediate representation between node-link diagrams at the high detail end and matrix representations on the low detail end.</dcterms:abstract>
    <dc:creator>Jäckle, Dominik</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-25T09:06:17Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-25T09:06:17Z</dc:date>
    <dcterms:issued>2020</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51036/1/Cakmak_2-2cjsu6eu0tpp9.pdf"/>
    <dcterms:title>dg2pix : Pixel-Based Visual Analysis of Dynamic Graphs</dcterms:title>
    <dc:contributor>Cakmak, Eren</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51036/1/Cakmak_2-2cjsu6eu0tpp9.pdf"/>
    <dc:creator>Cakmak, Eren</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed