dg2pix : Pixel-Based Visual Analysis of Dynamic Graphs
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): 422037984
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Presenting long sequences of dynamic graphs remains challenging due to the underlying large-scale and high-dimensional data. We propose dg2pix, a novel pixel-based visualization technique, to visually explore temporal and structural properties in long sequences of large-scale graphs. The approach consists of three main steps: (1) the multiscale modeling of the temporal dimension; (2) unsupervised graph embeddings to learn low-dimensional representations of the dynamic graph data; and (3) an interactive pixel-based visualization to simultaneously explore the evolving data at different temporal aggregation scales. dg2pix provides a scalable overview of a dynamic graph, supports the exploration of long sequences of high-dimensional graph data, and enables the identification and comparison of similar temporal states. We show the applicability of the technique to synthetic and real-world datasets, demonstrating that temporal patterns in dynamic graphs can be identified and interpreted over time. dg2pix contributes a suitable intermediate representation between node-link diagrams at the high detail end and matrix representations on the low detail end.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CAKMAK, Eren, Dominik JÄCKLE, Tobias SCHRECK, Daniel A. KEIM, 2020. dg2pix : Pixel-Based Visual Analysis of Dynamic Graphs. IEEE Visualization in Data Science (VDS) (Virtual Conference). Salt Lake City, Utah, 26. Okt. 2020. In: Proceedings of IEEE Visualization in Data Science (VDS). Piscataway, NJ: IEEE, 2020, S. 32-41. ISBN 978-1-72819-284-0. Verfügbar unter: doi: 10.1109/VDS51726.2020.00008BibTex
@inproceedings{Cakmak2020dg2pi-51036, year={2020}, doi={10.1109/VDS51726.2020.00008}, title={dg2pix : Pixel-Based Visual Analysis of Dynamic Graphs}, isbn={978-1-72819-284-0}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={Proceedings of IEEE Visualization in Data Science (VDS)}, pages={32--41}, author={Cakmak, Eren and Jäckle, Dominik and Schreck, Tobias and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51036"> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Jäckle, Dominik</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51036"/> <dc:creator>Keim, Daniel A.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Presenting long sequences of dynamic graphs remains challenging due to the underlying large-scale and high-dimensional data. We propose dg2pix, a novel pixel-based visualization technique, to visually explore temporal and structural properties in long sequences of large-scale graphs. The approach consists of three main steps: (1) the multiscale modeling of the temporal dimension; (2) unsupervised graph embeddings to learn low-dimensional representations of the dynamic graph data; and (3) an interactive pixel-based visualization to simultaneously explore the evolving data at different temporal aggregation scales. dg2pix provides a scalable overview of a dynamic graph, supports the exploration of long sequences of high-dimensional graph data, and enables the identification and comparison of similar temporal states. We show the applicability of the technique to synthetic and real-world datasets, demonstrating that temporal patterns in dynamic graphs can be identified and interpreted over time. dg2pix contributes a suitable intermediate representation between node-link diagrams at the high detail end and matrix representations on the low detail end.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Jäckle, Dominik</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-25T09:06:17Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-25T09:06:17Z</dc:date> <dcterms:issued>2020</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51036/1/Cakmak_2-2cjsu6eu0tpp9.pdf"/> <dcterms:title>dg2pix : Pixel-Based Visual Analysis of Dynamic Graphs</dcterms:title> <dc:contributor>Cakmak, Eren</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Schreck, Tobias</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51036/1/Cakmak_2-2cjsu6eu0tpp9.pdf"/> <dc:creator>Cakmak, Eren</dc:creator> </rdf:Description> </rdf:RDF>