Publikation:

Coherent and convex monetary risk measures for unbounded càdlàg processes

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2006

Autor:innen

Cheridito, Patrick
Delbaen, Freddy

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Finance and Stochastics. 2006, 10(3), pp. 427-448. ISSN 0949-2984. eISSN 1432-1122. Available under: doi: 10.1007/s00780-006-0017-1

Zusammenfassung

Assume that the random future evolution of values is modelled in continuous time. Then, a risk measure can be viewed as a functional on a space of continuous-time stochastic processes. In this paper we study coherent and convex monetary risk measures on the space of all càdlàg processes that are adapted to a given filtration. We show that if such risk measures are required to be real-valued, then they can only depend on a stochastic process in a way that is uninteresting for many applications. Therefore, we allow them to take values in ( −∞, ∞]. The economic interpretation of a value of ∞ is that the corresponding financial position is so risky that no additional amount of money can make it acceptable. The main result of the paper gives different characterizations of coherent or convex monetary risk measures on the space of all bounded adapted càdlàg processes that can be extended to coherent or convex monetary risk measures on the space of all adapted càdlàg processes. As examples we discuss a new approach to measure the risk of an insurance company and a coherent risk measure for unbounded càdlàg processes induced by a so called m-stable set.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690CHERIDITO, Patrick, Freddy DELBAEN, Michael KUPPER, 2006. Coherent and convex monetary risk measures for unbounded càdlàg processes. In: Finance and Stochastics. 2006, 10(3), pp. 427-448. ISSN 0949-2984. eISSN 1432-1122. Available under: doi: 10.1007/s00780-006-0017-1
BibTex
@article{Cheridito2006-09Coher-40948,
  year={2006},
  doi={10.1007/s00780-006-0017-1},
  title={Coherent and convex monetary risk measures for unbounded càdlàg processes},
  number={3},
  volume={10},
  issn={0949-2984},
  journal={Finance and Stochastics},
  pages={427--448},
  author={Cheridito, Patrick and Delbaen, Freddy and Kupper, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40948">
    <dc:creator>Delbaen, Freddy</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Kupper, Michael</dc:creator>
    <dcterms:abstract xml:lang="eng">Assume that the random future evolution of values is modelled in continuous time. Then, a risk measure can be viewed as a functional on a space of continuous-time stochastic processes. In this paper we study coherent and convex monetary risk measures on the space of all càdlàg processes that are adapted to a given filtration. We show that if such risk measures are required to be real-valued, then they can only depend on a stochastic process in a way that is uninteresting for many applications. Therefore, we allow them to take values in ( −∞, ∞]. The economic interpretation of a value of ∞ is that the corresponding financial position is so risky that no additional amount of money can make it acceptable. The main result of the paper gives different characterizations of coherent or convex monetary risk measures on the space of all bounded adapted càdlàg processes that can be extended to coherent or convex monetary risk measures on the space of all adapted càdlàg processes. As examples we discuss a new approach to measure the risk of an insurance company and a coherent risk measure for unbounded càdlàg processes induced by a so called m-stable set.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-15T13:15:45Z</dcterms:available>
    <dc:contributor>Kupper, Michael</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:title>Coherent and convex monetary risk measures for unbounded càdlàg processes</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40948"/>
    <dcterms:issued>2006-09</dcterms:issued>
    <dc:contributor>Delbaen, Freddy</dc:contributor>
    <dc:contributor>Cheridito, Patrick</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-15T13:15:45Z</dc:date>
    <dc:creator>Cheridito, Patrick</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen