Apoptosis- and Bcl-2- Induced Alterations of the Nucleocytoplasmic Barrier

Lade...
Vorschaubild
Dateien
Diss_Strasser.pdf
Diss_Strasser.pdfGröße: 1.92 MBDownloads: 687
Datum
2010
Autor:innen
Strasser, Christine
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Apoptose- und Bcl-2 induzierte Veränderungen der Kern-Zytoplasma-Barriere
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

This work was aimed at elaborating a detailed knowledge on the regulation of the nuclear envelope permeability barrier in cell death. Therefore, the effects of opposing pathways, apoptosis-induction via TRAIL and staurosporine (STS) and apoptosis-inhibition mediated by overexpression of the anti-apoptotic protein Bcl-2, on nuclear envelope permeability were investigated. In both models the underlying mechanisms mediating the influence on nuclear envelope permeability were characterized in detail. Apoptosis-induced alterations of the nucleocytoplasmic permeability barrier To elucidate the alterations of nuclear envelope permeability, live cell imaging experiments were performed in a confocal setup using a reporter system established in our group. Kinetics of apoptosis and alterations of nuclear envelope permeability were assessed by fluorescently labeled marker proteins. As chromatin condensation is a hallmark of apoptosis, it was defined as time point of apoptosis execution. Our results reveal that caspase-mediated disruption of nuclear envelope permeability barrier and chromatin condensation occurs simultaneously in both models of apoptosis. However, the two employed apoptotic models differ in permeability barrier function prior to caspase activation. While in TRAIL induced apoptosis nuclear permeability is unaltered prior to caspase activation and chromatin condensation, in STS-induced cell death an early, caspase-independent nuclear leakage can be detected. To elucidate the mechanisms responsible for this latter effect, the involvement of two different types of proteases was investigated. The first one was serine proteases, which have been proposed to play a role in STS-induced, caspase-independent apoptosis. In addition, preliminary data of our group indicated a role for serine proteases in influencing the nuclear permeability barrier. However, inhibition of serine proteases had no effect on STS-induced early nuclear leakage, excluding a possible role of serine proteases in mediating nuclear permeabilization. The second investigated proteases were calpains, Ca2+-dependent proteases. These have recently been reported to be responsible for nuclear envelope permeabilization in a neuronal model of excitotoxiicity. Interestingly, calpain inhibition did not decrease early STS-induced nuclear leakage but even enhanced it. Endoplasmic reticulum (ER) Ca2+-level have been shown to influence the nuclear pore and nuclear envelope permeability. To investigate the role of Ca2+ in STS-induced apoptosis, confocal live cell imaging experiments in the presence of the Ca2+-chelator BAPTA-AM were performed. This treatment resulted in the complete inhibition of early STS-induced nuclear leakage, indicating a pivotal role of Ca2+ in this system. This hypothesis was further strengthened by the finding that treatment with STS but not with TRAIL reduces ER Ca2+ content. Furthermore, the dependence of active transport on nuclear envelope permeability alterations was investigated. The data show that active nuclear uptake and passive permeability are largely uncoupled as active transport is functional in both apoptotic models until chromatin condensation, despite the STS-induced early increase in nuclear envelope permeability. Bcl-2-induced alterations of the nucleocytoplasmic permeability barrier As Bcl-2 is an anti-apoptotic protein and a proto-oncogene, it was expected to counteract STS-induced alterations of nuclear envelope permeability. Surprisingly, preliminary data of our group indicated that Bcl-2 overexpression results in a constitutively increased nuclear permeability. It has been shown, that (ER) Ca2+-level, which can be altered by Bcl-2, influence the nuclear envelope permeability barrier. Determination of the Ca2+-level in the ER revealed that Bcl-2 overexpressing cells indeed show reduced ER Ca2+-content and diminished capacitive Ca2+ uptake. The Bcl-2 induced effect on increased nuclear envelope permeability could be mimicked by adapting cells to a medium with reduced Ca2+ content. Furthermore, replenishment of ER Ca2+-content by overexpression of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase SERCA reversed the Bcl-2 mediated increase of nuclear envelope permeability. An unexpected and remarkable result of this work is the finding that in two opposing cellular contexts, apoptosis-induction and apoptosis-inhibition, the same mechanism to increase nuclear envelope permeability is engaged. For STS-induced apoptosis, an early increase in nuclear permeability is very plausible, sinces it has been proposed that increased nuclear permeability might be important for enhanced transport of pro-apoptotic factors. In light of this, it seems surprising that the anti-apoptotic protein Bcl-2 also increases nuclear envelope permeability. Possible interpretations of this unexpected result are presented in the discussion section of this thesis.

Zusammenfassung in einer weiteren Sprache

Ziel der Arbeit war es, vertiefte Kenntnisse über die Zelltod-abhängige Regulation der Permeabilitätsbarriere der Kernmembran für passive Diffusion zu erzielen. Um dies zu erreichen, wurden zwei, von ihren Auswrikungen her gegensätzliche zelluläre Modelle betrachtet; die Apoptose-Induktion mittels TRAIL und Staurosporin (STS) und die Apoptose-Inhibition durch Überexpression des anti-apoptotischen Proteins Bcl-2. In beiden Modellen wurde der, die Permeabilität verändernde Mechanismus im Detail charakterisiert. Apoptose-induzierte Veränderung der Kern-Zytoplama Barriere. Um die Apoptose-vermittelten Veränderungen der Kernpermeabilität zu detektieren wurden Lebendzellmikroskopie-Experimente mit Hilfe eines in unserer Gruppe etablierten Reportersystems durchgeführt. Der Verlauf der Apoptose- und die damit verbundene Veränderung der Kernpermeabilität wurden mit Hilfe fluoreszenter Marker-Proteine detektiert. Da Chromatinkondensation als Hauptmerkmal der Apoptose gilt, wurde diese als Zeitpunkt der Apoptoseexekution definiert. Die Ergebnisse zeigen, dass in beiden verwendeten Apoptosemodellen, STS und TRAIL, die Caspase-vermittelte Spaltung der Kernpore und der damit verbunde Verlust der Kernpermeabilitätsbarriere zum Zeitpunkt der Chromatinkondensation stattfinden. Allerdings unterscheiden sich die beiden Apoptoseauslöser im Verlauf der Permeabilisierung der Kernhülle vor diesen finalen Veränderungen. Während die Permeabilität der Kernhülle nach TRAIL-Zugabe unverändert bis zur Caspasenaktivierung bleibt, tritt früh nach Zugabe von STS eine Caspase-unabhängige Zunahme der Kernpermeabilität auf. Um die zugrunde liegenden Mechanismen zu identifizieren, wurde zunächst der Einfluss von zwei verschiedenen Typen von Proteasen untersucht. Die erste waren Serin-Proteasen, welche mit STS vermittelter Apoptose in Verbindung gebracht werden. Weiterhin deuten frühere Ergebnisse aus unserer Gruppe auf einen Einfluss von Serin-Proteasen auf die Kernpermeabilität hin. In dieser Arbeit konnte keine Veränderung der frühen STS vermittelten Zunahme der Kernpermeabilität durch Serinproteaseinhibition festgestellt werden. Die zweite untersuchte Gruppe von Proteasen waren Ca2+-abhängige Proteasen, Calpaine. Es wurde kürzlich gezeigt, dass diese für die exzitotoxischen Veränderungen der Kernpermeabilität in neuronalen Zellen verantwortlich sind. Interessanterweise führte die Inhibierung von Calpainen nicht zu einer Verringerung der frühen Kernpermeabilisierung sondern verstärkte diese zusätzlich. Viele Arbeiten haben einen Einfluss des Ca2+-Gehalts des endoplasmatischen Retikulums (ER) auf die Kernpore gezeigt. Um die Rolle von Ca2+ in der STS vermittelten Apoptose zu untersuchen wurden Lebendzellmikroskopie-Experimente in Gegenwart des Ca2+-Chelators BAPTA-AM durchgeführt. Dies resultierte in der vollständigen Unterbindung der frühen STS-induzierten Permeabilitätszunahme. Die dadurch implizierte entscheidende Funktion von Ca2+ wurde durch Messung des Ca2+-Gehalts im ER weiter untermauert. Desweiteren wurde die Abhängigkeit des aktiven Transports von der Kernpermeabilität untersucht. Die Ergebnisse zeigen, dass aktiver und passiver Transport unabhängig voneinander reguliert werden. Bcl-2-vermittelte Veränderung der Kern-Zytoplasma Barriere Da Bcl-2 ein anti-apoptotisches Protein sowie ein Protoonkogen ist, wurde vermutet, dass es die STS-vermittelte Erhöhung der Kernmembran verhindern könnte. Erste Versuche mit Bcl-2 überexprimierenden HeLa Zellen, zeigten jedoch überaschenderweise, dass Überexpression von Bcl-2 zu einer konstitutiven Zunahme der Kernpermeabiliät führt. Es wurde von anderen Gruppen berichtet, dass die funktionellen Eigenschaften der Kernmembran über den veränderten Ca2+ Spiegel im ER reguliert werden, ein Parameter der wiederum durch Bcl-2 beeinflusst wird. Die Bestimmung des ER Ca2+ Spiegels zeigte, dass Bcl-2 überexprimierende Zellen tatsächlich einen geringeren Ca2+-Gehalt im ER, sowie eine reduzierte kapazitive Ca2+ Aufnahme aufweisen. Die erhöhte Kernpermeabilität nach Bcl-2 Überexpression konnte durch Adaption der Zellen an niedrige Ca2+ Mengen im Medium nachgestellt werden. Weiterhin konnte durch Überexpression der Ca2+ ATPase SERCA der Ca2+ Spiegel im ER regeneriert werden und gleichzeitig die Bcl-2 vermittelte Zunahme der Kernpermeabilität reduziert werden. Diese Ergebnisse deuten darauf hin, dass ein verringerter Ca2+ Gehalt im ER für die Bcl-2 vermittelte Zunahme der Kernpermeabilität verantwortlich ist. Ein unerwartetes und bemerkenswertes Ergebnis dieser Arbeit ist die Feststellung, dass in zwei gegensätzlichen zellulären Paradigmen wie Apoptose-Auslösung und Apoptose-Inhibtion, die Kernpermeabilität über denselben Mechanismus gleich reguliert, nämlich erhöht, wird. Mögliche Hypothesen, die diesen Effekt erklären könnten werden in der vorliegenden Arbeit diskutiert.

Fachgebiet (DDC)
530 Physik
Schlagwörter
Kernpermeabilität, Nukleartransport, Apoptosis, Bcl-2, nuclear transport, calcium, permeability
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690STRASSER, Christine, 2010. Apoptosis- and Bcl-2- Induced Alterations of the Nucleocytoplasmic Barrier [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Strasser2010Apopt-7357,
  year={2010},
  title={Apoptosis- and Bcl-2- Induced Alterations of the Nucleocytoplasmic Barrier},
  author={Strasser, Christine},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/7357">
    <dc:format>application/pdf</dc:format>
    <dcterms:title>Apoptosis- and Bcl-2- Induced Alterations of the Nucleocytoplasmic Barrier</dcterms:title>
    <dc:contributor>Strasser, Christine</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7357/1/Diss_Strasser.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:33:46Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7357/1/Diss_Strasser.pdf"/>
    <dcterms:issued>2010</dcterms:issued>
    <dcterms:alternative>Apoptose- und Bcl-2 induzierte Veränderungen der Kern-Zytoplasma-Barriere</dcterms:alternative>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/7357"/>
    <dc:creator>Strasser, Christine</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract xml:lang="eng">This work was aimed at elaborating a detailed knowledge on the regulation of the nuclear envelope permeability barrier in cell death. Therefore, the effects of opposing pathways, apoptosis-induction via TRAIL and staurosporine (STS) and apoptosis-inhibition mediated by overexpression of the anti-apoptotic protein Bcl-2, on nuclear envelope permeability were investigated. In both models the underlying mechanisms mediating the influence on nuclear envelope permeability were characterized in detail. Apoptosis-induced alterations of the nucleocytoplasmic permeability barrier To elucidate the alterations of nuclear envelope permeability, live cell imaging experiments were performed in a confocal setup using a reporter system established in our group. Kinetics of apoptosis and alterations of nuclear envelope permeability were assessed by fluorescently labeled marker proteins. As chromatin condensation is a hallmark of apoptosis, it was defined as time point of apoptosis execution. Our results reveal that caspase-mediated disruption of nuclear envelope permeability barrier and chromatin condensation occurs simultaneously in both models of apoptosis. However, the two employed apoptotic models differ in permeability barrier function prior to caspase activation. While in TRAIL induced apoptosis nuclear permeability is unaltered prior to caspase activation and chromatin condensation, in STS-induced cell death an early, caspase-independent nuclear leakage can be detected. To elucidate the mechanisms responsible for this latter effect, the involvement of two different types of proteases was investigated. The first one was serine proteases, which have been proposed to play a role in STS-induced, caspase-independent apoptosis. In addition, preliminary data of our group indicated a role for serine proteases in influencing the nuclear permeability barrier. However, inhibition of serine proteases had no effect on STS-induced early nuclear leakage, excluding a possible role of serine proteases in mediating nuclear permeabilization. The second investigated proteases were calpains, Ca&lt;sup&gt;2+&lt;/sup&gt;-dependent proteases. These have recently been reported to be responsible for nuclear envelope permeabilization in a neuronal model of excitotoxiicity. Interestingly, calpain inhibition did not decrease early STS-induced nuclear leakage but even enhanced it. Endoplasmic reticulum (ER) Ca&lt;sup&gt;2+&lt;/sup&gt;-level have been shown to influence the nuclear pore and nuclear envelope permeability. To investigate the role of Ca&lt;sup&gt;2+&lt;/sup&gt; in STS-induced apoptosis, confocal live cell imaging experiments in the presence of the Ca&lt;sup&gt;2+&lt;/sup&gt;-chelator BAPTA-AM were performed. This treatment resulted in the complete inhibition of early STS-induced nuclear leakage, indicating a pivotal role of Ca&lt;sup&gt;2+&lt;/sup&gt; in this system. This hypothesis was further strengthened by the finding that treatment with STS but not with TRAIL reduces ER Ca&lt;sup&gt;2+&lt;/sup&gt; content.  Furthermore, the dependence of active transport on nuclear envelope permeability alterations was investigated. The data show that active nuclear uptake and passive permeability are largely uncoupled as active transport is functional in both apoptotic models until chromatin condensation, despite the STS-induced early increase in nuclear envelope permeability. Bcl-2-induced alterations of the nucleocytoplasmic permeability barrier As Bcl-2 is an anti-apoptotic protein and a proto-oncogene, it was expected to counteract STS-induced alterations of nuclear envelope permeability. Surprisingly, preliminary data of our group indicated that Bcl-2 overexpression results in a constitutively increased nuclear permeability. It has been shown, that (ER) Ca&lt;sup&gt;2+&lt;/sup&gt;-level, which can be altered by Bcl-2, influence the nuclear envelope permeability barrier. Determination of the Ca&lt;sup&gt;2+&lt;/sup&gt;-level in the ER revealed that Bcl-2 overexpressing cells indeed show reduced ER Ca&lt;sup&gt;2+&lt;/sup&gt;-content and diminished capacitive Ca&lt;sup&gt;2+&lt;/sup&gt; uptake. The Bcl-2 induced effect on increased nuclear envelope permeability could be mimicked by adapting cells to a medium with reduced Ca&lt;sup&gt;2+&lt;/sup&gt; content. Furthermore, replenishment of ER Ca&lt;sup&gt;2+&lt;/sup&gt;-content by overexpression of the sarcoplasmic/endoplasmic reticulum Ca&lt;sup&gt;2+&lt;/sup&gt;-ATPase SERCA reversed the Bcl-2 mediated increase of nuclear envelope permeability. An unexpected and remarkable result of this work is the finding that in two opposing cellular contexts, apoptosis-induction and apoptosis-inhibition, the same mechanism to increase nuclear envelope permeability is engaged. For STS-induced apoptosis, an early increase in nuclear permeability is very plausible, sinces it has been proposed that increased nuclear permeability might be important for enhanced transport of pro-apoptotic factors. In light of this, it seems surprising that the anti-apoptotic protein Bcl-2 also increases nuclear envelope permeability. Possible interpretations of this unexpected result are presented in the discussion section of this thesis.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-12-10T23:25:04Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
July 30, 2010
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen