Toric completions and bounded functions on real algebraic varieties
Toric completions and bounded functions on real algebraic varieties
Loading...
Date
2016
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Journal of the London Mathematical Society ; 94 (2016), 2. - pp. 598-616. - ISSN 0024-6107. - eISSN 1469-7750
Abstract
Given a semi-algebraic set S, we study compactifications of S that arise from embeddings into complete toric varieties. This makes it possible to describe the asymptotic growth of polynomial functions on S in terms of combinatorial data. We extend our earlier work in Plaumann and Scheiderer [‘The ring of bounded polynomials on a semi-algebraic set’, Trans. Amer. Math. Soc. 364 (2012) 4663–4682] to compute the ring of bounded functions in this setting, and discuss applications to positive polynomials and the moment problem. Complete results are obtained in special cases, like sets defined by binomial inequalities. We also show that the wild behaviour of certain examples constructed by Krug [‘Geometric interpretations of a counterexample to Hilbert's 14th problem, and rings of bounded polynomials on semialgebraic sets’, Preprint, 2011, arXiv:1105.2029] and Mondal-Netzer [‘How fast do polynomials grow on semialgebraic sets?’, J. Algebra 413 (2014) 320–344] cannot occur in a toric setting.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
PLAUMANN, Daniel, Claus SCHEIDERER, 2016. Toric completions and bounded functions on real algebraic varieties. In: Journal of the London Mathematical Society. 94(2), pp. 598-616. ISSN 0024-6107. eISSN 1469-7750. Available under: doi: 10.1112/jlms/jdw050BibTex
@article{Plaumann2016Toric-37777, year={2016}, doi={10.1112/jlms/jdw050}, title={Toric completions and bounded functions on real algebraic varieties}, number={2}, volume={94}, issn={0024-6107}, journal={Journal of the London Mathematical Society}, pages={598--616}, author={Plaumann, Daniel and Scheiderer, Claus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37777"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-28T15:19:00Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-28T15:19:00Z</dc:date> <dc:creator>Scheiderer, Claus</dc:creator> <dc:contributor>Plaumann, Daniel</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:abstract xml:lang="eng">Given a semi-algebraic set S, we study compactifications of S that arise from embeddings into complete toric varieties. This makes it possible to describe the asymptotic growth of polynomial functions on S in terms of combinatorial data. We extend our earlier work in Plaumann and Scheiderer [‘The ring of bounded polynomials on a semi-algebraic set’, Trans. Amer. Math. Soc. 364 (2012) 4663–4682] to compute the ring of bounded functions in this setting, and discuss applications to positive polynomials and the moment problem. Complete results are obtained in special cases, like sets defined by binomial inequalities. We also show that the wild behaviour of certain examples constructed by Krug [‘Geometric interpretations of a counterexample to Hilbert's 14th problem, and rings of bounded polynomials on semialgebraic sets’, Preprint, 2011, arXiv:1105.2029] and Mondal-Netzer [‘How fast do polynomials grow on semialgebraic sets?’, J. Algebra 413 (2014) 320–344] cannot occur in a toric setting.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37777"/> <dc:contributor>Scheiderer, Claus</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2016</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Toric completions and bounded functions on real algebraic varieties</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37777/1/Plaumann_0-374717.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37777/1/Plaumann_0-374717.pdf"/> <dc:creator>Plaumann, Daniel</dc:creator> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes