Publikation:

Toric completions and bounded functions on real algebraic varieties

Lade...
Vorschaubild

Dateien

Plaumann_0-374717.pdf
Plaumann_0-374717.pdfGröße: 305.53 KBDownloads: 222

Datum

2016

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of the London Mathematical Society. 2016, 94(2), pp. 598-616. ISSN 0024-6107. eISSN 1469-7750. Available under: doi: 10.1112/jlms/jdw050

Zusammenfassung

Given a semi-algebraic set S, we study compactifications of S that arise from embeddings into complete toric varieties. This makes it possible to describe the asymptotic growth of polynomial functions on S in terms of combinatorial data. We extend our earlier work in Plaumann and Scheiderer [‘The ring of bounded polynomials on a semi-algebraic set’, Trans. Amer. Math. Soc. 364 (2012) 4663–4682] to compute the ring of bounded functions in this setting, and discuss applications to positive polynomials and the moment problem. Complete results are obtained in special cases, like sets defined by binomial inequalities. We also show that the wild behaviour of certain examples constructed by Krug [‘Geometric interpretations of a counterexample to Hilbert's 14th problem, and rings of bounded polynomials on semialgebraic sets’, Preprint, 2011, arXiv:1105.2029] and Mondal-Netzer [‘How fast do polynomials grow on semialgebraic sets?’, J. Algebra 413 (2014) 320–344] cannot occur in a toric setting.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PLAUMANN, Daniel, Claus SCHEIDERER, 2016. Toric completions and bounded functions on real algebraic varieties. In: Journal of the London Mathematical Society. 2016, 94(2), pp. 598-616. ISSN 0024-6107. eISSN 1469-7750. Available under: doi: 10.1112/jlms/jdw050
BibTex
@article{Plaumann2016Toric-37777,
  year={2016},
  doi={10.1112/jlms/jdw050},
  title={Toric completions and bounded functions on real algebraic varieties},
  number={2},
  volume={94},
  issn={0024-6107},
  journal={Journal of the London Mathematical Society},
  pages={598--616},
  author={Plaumann, Daniel and Scheiderer, Claus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37777">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-28T15:19:00Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-28T15:19:00Z</dc:date>
    <dc:creator>Scheiderer, Claus</dc:creator>
    <dc:contributor>Plaumann, Daniel</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:abstract xml:lang="eng">Given a semi-algebraic set S, we study compactifications of S that arise from embeddings into complete toric varieties. This makes it possible to describe the asymptotic growth of polynomial functions on S in terms of combinatorial data. We extend our earlier work in Plaumann and Scheiderer [‘The ring of bounded polynomials on a semi-algebraic set’, Trans. Amer. Math. Soc. 364 (2012) 4663–4682] to compute the ring of bounded functions in this setting, and discuss applications to positive polynomials and the moment problem. Complete results are obtained in special cases, like sets defined by binomial inequalities. We also show that the wild behaviour of certain examples constructed by Krug [‘Geometric interpretations of a counterexample to Hilbert's 14th problem, and rings of bounded polynomials on semialgebraic sets’, Preprint, 2011, arXiv:1105.2029] and Mondal-Netzer [‘How fast do polynomials grow on semialgebraic sets?’, J. Algebra 413 (2014) 320–344] cannot occur in a toric setting.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37777"/>
    <dc:contributor>Scheiderer, Claus</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2016</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Toric completions and bounded functions on real algebraic varieties</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37777/1/Plaumann_0-374717.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37777/1/Plaumann_0-374717.pdf"/>
    <dc:creator>Plaumann, Daniel</dc:creator>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen