Publikation:

Novel Fast Marching for Automated Segmentation of the Hippocampus (FMASH): method and validation on clinical data

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2011

Autor:innen

Bishop, Courtney A.
Jenkinson, Mark
Andersson, Jesper
Declerck, Jerome

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

NeuroImage. 2011, 55(3), pp. 1009-1019. ISSN 1053-8119. eISSN 1095-9572. Available under: doi: 10.1016/j.neuroimage.2010.12.071

Zusammenfassung

With hippocampal atrophy both a clinical biomarker for early Alzheimer's Disease (AD) and implicated in many other neurological and psychiatric diseases, there is much interest in the accurate, reproducible delineation of this region of interest (ROI) in structural MR images. Here we present Fast Marching for Automated Segmentation of the Hippocampus (FMASH): a novel approach using the Sethian Fast Marching (FM) technique to grow a hippocampal ROI from an automatically-defined seed point. Segmentation performance is assessed on two separate clinical datasets, utilising expert manual labels as gold standard to quantify Dice coefficients, false positive rates (FPR) and false negative rates (FNR). The first clinical dataset (denoted CMA) contains normal controls (NC) and atrophied AD patients, whilst the second is a collection of NC and bipolar (BP) patients (denoted BPSA). An optimal and robust stopping criterion is established for the propagating FM front and the final FMASH segmentation estimates compared to two commonly-used methods: FIRST/FSL and Freesurfer (FS). Results show that FMASH outperforms both FIRST and FS on the BPSA data, with significantly higher Dice coefficients (0.80 ± 0.01) and lower FPR. Despite some intrinsic bias for FIRST and FS on the CMA data, due to their training, FMASH performs comparably well on the CMA data, with an average bilateral Dice coefficient of 0.82 ± 0.01. Furthermore, FMASH most accurately captures the hippocampal volume difference between NC and AD, and provides a more accurate estimation of the problematic hippocampus–amygdala border on both clinical datasets. The consistency in performance across the two datasets suggests that FMASH is applicable to a range of clinical data with differing image quality and demographics.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Structural MRI, Hippocampus, Automated, Segmentation, Region-growing

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BISHOP, Courtney A., Mark JENKINSON, Jesper ANDERSSON, Jerome DECLERCK, Dorit MERHOF, 2011. Novel Fast Marching for Automated Segmentation of the Hippocampus (FMASH): method and validation on clinical data. In: NeuroImage. 2011, 55(3), pp. 1009-1019. ISSN 1053-8119. eISSN 1095-9572. Available under: doi: 10.1016/j.neuroimage.2010.12.071
BibTex
@article{Bishop2011-04-01Novel-17536,
  year={2011},
  doi={10.1016/j.neuroimage.2010.12.071},
  title={Novel Fast Marching for Automated Segmentation of the Hippocampus (FMASH): method and validation on clinical data},
  number={3},
  volume={55},
  issn={1053-8119},
  journal={NeuroImage},
  pages={1009--1019},
  author={Bishop, Courtney A. and Jenkinson, Mark and Andersson, Jesper and Declerck, Jerome and Merhof, Dorit}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/17536">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/17536"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Declerck, Jerome</dc:contributor>
    <dc:creator>Andersson, Jesper</dc:creator>
    <dc:creator>Jenkinson, Mark</dc:creator>
    <dc:contributor>Bishop, Courtney A.</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-10T13:42:40Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Jenkinson, Mark</dc:contributor>
    <dcterms:title>Novel Fast Marching for Automated Segmentation of the Hippocampus (FMASH): method and validation on clinical data</dcterms:title>
    <dcterms:bibliographicCitation>Publ. in: NeuroImage : a journal of brain function ; 55 (2011), 3. - S. 1009-1019</dcterms:bibliographicCitation>
    <dc:contributor>Andersson, Jesper</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2011-04-01</dcterms:issued>
    <dc:creator>Bishop, Courtney A.</dc:creator>
    <dc:contributor>Merhof, Dorit</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Merhof, Dorit</dc:creator>
    <dc:creator>Declerck, Jerome</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-10T13:42:40Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">With hippocampal atrophy both a clinical biomarker for early Alzheimer's Disease (AD) and implicated in many other neurological and psychiatric diseases, there is much interest in the accurate, reproducible delineation of this region of interest (ROI) in structural MR images. Here we present Fast Marching for Automated Segmentation of the Hippocampus (FMASH): a novel approach using the Sethian Fast Marching (FM) technique to grow a hippocampal ROI from an automatically-defined seed point. Segmentation performance is assessed on two separate clinical datasets, utilising expert manual labels as gold standard to quantify Dice coefficients, false positive rates (FPR) and false negative rates (FNR). The first clinical dataset (denoted CMA) contains normal controls (NC) and atrophied AD patients, whilst the second is a collection of NC and bipolar (BP) patients (denoted BPSA). An optimal and robust stopping criterion is established for the propagating FM front and the final FMASH segmentation estimates compared to two commonly-used methods: FIRST/FSL and Freesurfer (FS). Results show that FMASH outperforms both FIRST and FS on the BPSA data, with significantly higher Dice coefficients (0.80 ± 0.01) and lower FPR. Despite some intrinsic bias for FIRST and FS on the CMA data, due to their training, FMASH performs comparably well on the CMA data, with an average bilateral Dice coefficient of 0.82 ± 0.01. Furthermore, FMASH most accurately captures the hippocampal volume difference between NC and AD, and provides a more accurate estimation of the problematic hippocampus–amygdala border on both clinical datasets. The consistency in performance across the two datasets suggests that FMASH is applicable to a range of clinical data with differing image quality and demographics.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen