Visual Analytics of Spatio-Temporal Event Predictions : Investigating Causes for Urban Heat Islands

Lade...
Vorschaubild
Dateien
Miller_2-gq9vvj911xd8.pdf
Miller_2-gq9vvj911xd8.pdfGröße: 13.27 MBDownloads: 1004
Datum
2018
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Visuelle Analyse von raumzeitlichen Ereignisvorhersagen : Untersuchung der Ursachen für Urbane Hitzeinseln
Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Due to ongoing urbanization and industrialization processes, city planners are facing an increasing number of challenges. One such challenge is the phenomenon of locally increased temperature { the urban heat island effect. This effect is a well-known phenomenon in both the domain of city planning and meteorology. The appearance of urban heat islands is not only influenced by many apparent variables, such as weather, vegetation, and surface characteristics, but also by rather inconspicuous parameters, like industry, transportation infrastructure, population density, energy management, and air pollution. Because of this large number of influencing factors, analyzing the causes for this effect is a complex task. To improve urban climate and energy management, innovative applications that provide support for decision-making tasks are needed. We propose a visual analytics system which enables expert users to explore temperature conditions of a city area. At its core, the system uses a random forest classification model, trained on heterogeneous, nationwide collected data, which facilitates interactive parameter steering of spatial and meteorological features. Users can explore the influence of several variables on urban heat island forecast events. The system provides spatio-temporal event predictions that offer insights about future conditions and the effect of various variables on the formation of urban heat islands. To present connections between diverse urban heat island properties and forecast events, we compose different mature, interactive visualizations. Through several use cases, we demonstrate that our system allows users to focus on relevant features while getting a solid overview of the urban heat island situation in a specific area of interest. The integration of a combination of selected reasonable visualizations with a prediction model based on ensemble learning offers a viable solution for an adequate analysis of the urban heat island effect that can be enhanced by further functionality in the future.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Urban Heat Islands, Visual Analytics, Spatio-Temporal, Event Prediction, Investigating causes, influencing factors, temperature
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690MILLER, Matthias, 2018. Visual Analytics of Spatio-Temporal Event Predictions : Investigating Causes for Urban Heat Islands [Master thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Miller2018Visua-44838,
  year={2018},
  title={Visual Analytics of Spatio-Temporal Event Predictions : Investigating Causes for Urban Heat Islands},
  address={Konstanz},
  school={Universität Konstanz},
  author={Miller, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44838">
    <dcterms:issued>2018</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Visual Analytics of Spatio-Temporal Event Predictions : Investigating Causes for Urban Heat Islands</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44838/3/Miller_2-gq9vvj911xd8.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44838/3/Miller_2-gq9vvj911xd8.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-05T07:14:34Z</dcterms:available>
    <dc:creator>Miller, Matthias</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">Due to ongoing urbanization and industrialization processes, city planners are facing an increasing number of challenges. One such challenge is the phenomenon of locally increased temperature { the urban heat island effect. This effect is a well-known phenomenon in both the domain of city planning and meteorology. The appearance of urban heat islands is not only influenced by many apparent variables, such as weather, vegetation, and surface characteristics, but also by rather inconspicuous parameters, like industry, transportation infrastructure, population density, energy management, and air pollution. Because of this large number of influencing factors, analyzing the causes for this effect is a complex task. To improve urban climate and energy management, innovative applications that provide support for decision-making tasks are needed. We propose a visual analytics system which enables expert users to explore temperature conditions of a city area. At its core, the system uses a random forest classification model, trained on heterogeneous, nationwide collected data, which facilitates interactive parameter steering of spatial and meteorological features. Users can explore the influence of several variables on urban heat island forecast events. The system provides spatio-temporal event predictions that offer insights about future conditions and the effect of various variables on the formation of urban heat islands. To present connections between diverse urban heat island properties and forecast events, we compose different mature, interactive visualizations. Through several use cases, we demonstrate that our system allows users to focus on relevant features while getting a solid overview of the urban heat island situation in a specific area of interest. The integration of a combination of selected reasonable visualizations with a prediction model based on ensemble learning offers a viable solution for an adequate analysis of the urban heat island effect that can be enhanced by further functionality in the future.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44838"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-05T07:14:34Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Miller, Matthias</dc:contributor>
    <dcterms:alternative>Visuelle Analyse von raumzeitlichen Ereignisvorhersagen : Untersuchung der Ursachen für Urbane Hitzeinseln</dcterms:alternative>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2018
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen