Datensatz:

PhytoNode Upgraded : Energy-Efficient Long-Term Environmental Monitoring Using Phytosensing

Lade...
Vorschaubild

Datum der Erstveröffentlichung

2024

Andere Beitragende

Repositorium der Erstveröffentlichung

Zenodo

Version des Datensatzes

Link zur Lizenz

Angaben zur Forschungsförderung

European Union (EU): 101017899

Projekt

Core Facility der Universität Konstanz
Bewerten Sie die FAIRness der Forschungsdaten

Gesperrt bis

Titel in einer weiteren Sprache

Publikationsstatus
Published

Zusammenfassung

The urban population continues to grow despite health risks associated with densely populated cities, such as traffic congestion and air pollution. At the same time cities are also further heating up due to climate change. Environmental monitoring is increasingly critical to react quickly to temporarily increased concentrations of, for example, carbon monoxide, nitrogen oxides, ozone, and particulate matter. We introduce a significantly improved version of our PhytoNode, an energy-efficient sensor node designed for phytosensing, that is, using of plants as environmental sensors. We aim for a scalable and sustainable real-time monitoring solution following our vision of an "intelligent plant" as an inexpensive and accurate sensor node. We measure electrical potentials and leaf temperatures of plants to assess their well-being and, in turn, environmental conditions. The PhytoNode achieves long-term energy autonomy by harvesting energy via solar cells and shares data via Bluetooth Low Energy (BLE) communication. We process the gathered time series plant data onboard in real-time using methods of Machine Learning (ML) to analyze the plant's activity and to detect dangerous concentrations of gases. In a few showcasing experiments, we demonstrate the feasibility of both our hardware and software approach for continuous, long-term environmental monitoring based on phytosensing. By embedding engineered devices in living plants as a `plant wearable' that listens to plant responses, we hope to help pushing towards smarter future cities and healthier urban environments.

Data repository for our paper "PhytoNode Upgraded: Energy-Efficient Long-Term Environmental Monitoring Using Phytosensing", submitted to the 8th Future of Information and Communication Conference 2025 (FICC 2025). Please refer to the paper for more information.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Zugehörige Publikationen in KOPS

Publikation
Beitrag zu einem Konferenzband
PhytoNode Upgraded : Energy-Efficient Long-Term Environmental Monitoring Using Phytosensing
(2025) Buss, Eduard; Aust, Till; Hamburger, Oliver; Heck, Christoph; Hamann, Heiko
Erschienen in: ARAI, Kohei, Hrsg.. Advances in Information and Communication : Proceedings of the 2025 Future of Information and Communication Conference (FICC), Volume 1. Cham: Springer, 2025, S. 119-138. Lecture Notes in Networks and Systems (LNNS). 1283. ISSN 2367-3370. eISSN 2367-3389. ISBN 978-3-031-84456-0. Verfügbar unter: doi: 10.1007/978-3-031-84457-7_7
Link zu zugehöriger Publikation
Link zu zugehörigem Datensatz

Zitieren

ISO 690BUSS, Eduard, Till AUST, Oliver HAMBURGER, Christoph HECK, Heiko HAMANN, 2024. PhytoNode Upgraded : Energy-Efficient Long-Term Environmental Monitoring Using Phytosensing
BibTex
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72984">
    <dc:creator>Hamburger, Oliver</dc:creator>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-08T12:11:07Z</dc:date>
    <dc:contributor>Heck, Christoph</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-08T12:11:07Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72984"/>
    <dc:contributor>Aust, Till</dc:contributor>
    <dc:contributor>Buss, Eduard</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71925"/>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dcterms:rights rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dcterms:issued>2024</dcterms:issued>
    <dc:contributor>Hamburger, Oliver</dc:contributor>
    <dc:creator>Aust, Till</dc:creator>
    <dc:rights>Creative Commons Attribution 4.0 International</dc:rights>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dc:creator>Buss, Eduard</dc:creator>
    <dc:creator>Heck, Christoph</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract>The urban population continues to grow despite health risks associated with densely populated cities, such as traffic congestion and air pollution. At the same time cities are also further heating up due to climate change. Environmental monitoring is increasingly critical to react quickly to temporarily increased concentrations of, for example, carbon monoxide, nitrogen oxides, ozone, and particulate matter. 
We introduce a significantly improved version of our PhytoNode, an energy-efficient sensor node designed for phytosensing, that is, using of plants as environmental sensors. We aim for a scalable and sustainable real-time monitoring solution following our vision of an "intelligent plant" as an inexpensive and accurate sensor node. 
We measure electrical potentials and leaf temperatures of plants to assess their well-being and, in turn, environmental conditions. 
The PhytoNode achieves long-term energy autonomy by harvesting energy via solar cells and shares data via Bluetooth Low Energy (BLE) communication. We process the gathered time series plant data onboard in real-time using methods of Machine Learning (ML) to analyze the plant's activity and to detect dangerous concentrations of gases. In a few showcasing experiments, we demonstrate the feasibility of both our hardware and software approach for continuous, long-term environmental monitoring based on phytosensing. By embedding engineered devices in living plants as a `plant wearable' that listens to plant responses, we hope to help pushing towards smarter future cities and healthier urban environments.

Data repository for our paper "PhytoNode Upgraded: Energy-Efficient Long-Term Environmental Monitoring Using Phytosensing", submitted to the 8th Future of Information and Communication Conference 2025 (FICC 2025). Please refer to the paper for more information.</dcterms:abstract>
    <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-05-31T09:53:41Z</dcterms:created>
    <dcterms:title>PhytoNode Upgraded : Energy-Efficient Long-Term Environmental Monitoring Using Phytosensing</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71925"/>
  </rdf:Description>
</rdf:RDF>
URL (Link zu den Daten)

Prüfdatum der URL

Kommentar zur Publikation

Universitätsbibliographie
Ja
Diese Publikation teilen