Datensatz: Towards A Reliable Ground-Truth For Biased Language Detection
Datum der Erstveröffentlichung
Andere Beitragende
Repositorium der Erstveröffentlichung
Version des Datensatzes
DOI (Link zu den Daten)
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationsstatus
Zusammenfassung
Reference texts such as encyclopedias and news articles can manifest biased language when objective reporting is substituted by subjective writing. Existing methods to detect linguistic cues of bias mostly rely on annotated data to train machine learning models. However, low annotator agreement and comparability is a substantial drawback in available media bias corpora. To improve available datasets, we collect and compare labels obtained from two popular crowdsourcing platforms. Our results demonstrate the existing crowdsourcing approaches' lack of data quality, underlining the need for a trained expert framework to gather a more reliable dataset. Improving the agreement from Krippendorff's (\alpha) = 0.144 (crowdsourcing labels) to (\alpha) = 0.419 (expert labels), we assume that trained annotators' linguistic knowledge increases data quality improving the performance of existing bias detection systems. The expert annotations are meant to be used to enrich the dataset MBIC – A Media Bias Annotation Dataset Including Annotator Characteristics available at https://zenodo.org/record/4474336#.YBHO6xYxmK8.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Zitieren
ISO 690
GIPP, Bela, Jan-David KRIEGER, Manuel PLANK, Timo SPINDE, 2021. Towards A Reliable Ground-Truth For Biased Language DetectionBibTex
RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73980">
<dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-20T22:00:19Z</dcterms:created>
<dc:contributor>Gipp, Bela</dc:contributor>
<dc:language>eng</dc:language>
<dc:creator>Plank, Manuel</dc:creator>
<dc:contributor>Krieger, Jan-David</dc:contributor>
<dc:rights>Creative Commons Attribution 4.0 International</dc:rights>
<dcterms:title>Towards A Reliable Ground-Truth For Biased Language Detection</dcterms:title>
<dc:creator>Krieger, Jan-David</dc:creator>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73980"/>
<dc:contributor>Plank, Manuel</dc:contributor>
<dcterms:rights rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
<dcterms:abstract>Reference texts such as encyclopedias and news articles can manifest biased language when objective reporting is substituted by subjective writing. Existing methods to detect linguistic cues of bias mostly rely on annotated data to train machine learning models. However, low annotator agreement and comparability is a substantial drawback in available media bias corpora. To improve available datasets, we collect and compare labels obtained from two popular crowdsourcing platforms. Our results demonstrate the existing crowdsourcing approaches' lack of data quality, underlining the need for a trained expert framework to gather a more reliable dataset. Improving the agreement from Krippendorff's \(\alpha\) = 0.144 (crowdsourcing labels) to \(\alpha\) = 0.419 (expert labels), we assume that trained annotators' linguistic knowledge increases data quality improving the performance of existing bias detection systems. The expert annotations are meant to be used to enrich the dataset <em>MBIC </em>– <em>A Media Bias Annotation Dataset Including Annotator Characteristics</em> available at https://zenodo.org/record/4474336#.YBHO6xYxmK8.</dcterms:abstract>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71925"/>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-16T08:46:41Z</dc:date>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:contributor>Spinde, Timo</dc:contributor>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71925"/>
<dcterms:issued>2021</dcterms:issued>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-16T08:46:41Z</dcterms:available>
<dc:creator>Gipp, Bela</dc:creator>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:creator>Spinde, Timo</dc:creator>
</rdf:Description>
</rdf:RDF>