Datensatz:

Towards A Reliable Ground-Truth For Biased Language Detection

Lade...
Vorschaubild

Datum der Erstveröffentlichung

2021

Andere Beitragende

Repositorium der Erstveröffentlichung

Zenodo

Version des Datensatzes

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Core Facility der Universität Konstanz
Bewerten Sie die FAIRness der Forschungsdaten

Gesperrt bis

Titel in einer weiteren Sprache

Publikationsstatus
Published

Zusammenfassung

Reference texts such as encyclopedias and news articles can manifest biased language when objective reporting is substituted by subjective writing. Existing methods to detect linguistic cues of bias mostly rely on annotated data to train machine learning models. However, low annotator agreement and comparability is a substantial drawback in available media bias corpora. To improve available datasets, we collect and compare labels obtained from two popular crowdsourcing platforms. Our results demonstrate the existing crowdsourcing approaches' lack of data quality, underlining the need for a trained expert framework to gather a more reliable dataset. Improving the agreement from Krippendorff's (\alpha) = 0.144 (crowdsourcing labels) to (\alpha) = 0.419 (expert labels), we assume that trained annotators' linguistic knowledge increases data quality improving the performance of existing bias detection systems. The expert annotations are meant to be used to enrich the dataset MBIC A Media Bias Annotation Dataset Including Annotator Characteristics available at https://zenodo.org/record/4474336#.YBHO6xYxmK8.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Media Bias, News Slant, Crowdsourcing

Zugehörige Publikationen in KOPS

Link zu zugehöriger Publikation
Link zu zugehörigem Datensatz

Zitieren

ISO 690GIPP, Bela, Jan-David KRIEGER, Manuel PLANK, Timo SPINDE, 2021. Towards A Reliable Ground-Truth For Biased Language Detection
BibTex
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73980">
    <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-20T22:00:19Z</dcterms:created>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Plank, Manuel</dc:creator>
    <dc:contributor>Krieger, Jan-David</dc:contributor>
    <dc:rights>Creative Commons Attribution 4.0 International</dc:rights>
    <dcterms:title>Towards A Reliable Ground-Truth For Biased Language Detection</dcterms:title>
    <dc:creator>Krieger, Jan-David</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73980"/>
    <dc:contributor>Plank, Manuel</dc:contributor>
    <dcterms:rights rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dcterms:abstract>Reference texts such as encyclopedias and news articles can manifest biased language when objective reporting is substituted by subjective writing. Existing methods to detect linguistic cues of bias mostly rely on annotated data to train machine learning models. However, low annotator agreement and comparability is a substantial drawback in available media bias corpora. To improve available datasets, we collect and compare labels obtained from two popular crowdsourcing platforms. Our results demonstrate the existing crowdsourcing approaches' lack of data quality, underlining the need for a trained expert framework to gather a more reliable dataset. Improving the agreement from Krippendorff's \(\alpha\) = 0.144 (crowdsourcing labels) to \(\alpha\) = 0.419 (expert labels), we assume that trained annotators' linguistic knowledge increases data quality improving the performance of existing bias detection systems. The expert annotations are meant to be used to enrich the dataset &lt;em&gt;MBIC &lt;/em&gt;– &lt;em&gt;A Media Bias Annotation Dataset Including Annotator Characteristics&lt;/em&gt; available at https://zenodo.org/record/4474336#.YBHO6xYxmK8.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71925"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-16T08:46:41Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Spinde, Timo</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71925"/>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-16T08:46:41Z</dcterms:available>
    <dc:creator>Gipp, Bela</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Spinde, Timo</dc:creator>
  </rdf:Description>
</rdf:RDF>
URL (Link zu den Daten)

Prüfdatum der URL

Kommentar zur Publikation

Universitätsbibliographie
Ja
Diese Publikation teilen