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Abstract

Experience-related plasticity is an essential component of networks involved in early olfactory processing. However, the mecha-
nisms and functions of plasticity in these neural networks are not well understood. We studied nonassociative plasticity by evalu-
ating responses to two pure odors (A and X) and their binary mixture using calcium imaging of odor-elicited activity in output
neurons of the honey bee antennal lobe. Unreinforced exposure to A or X produced no change in the neural response elicited by
the pure odors. However, exposure to one odor (e.g. A) caused the response to the mixture to become more similar to that of the
other component (X). We also show in behavioral analyses that unreinforced exposure to A caused the mixture to become per-
ceptually more similar to X. These results suggest that nonassociative plasticity modifies neural networks in such a way that it
affects local competitive interactions among mixture components. We used a computational model to evaluate the most likely tar-
gets for modification. Hebbian modification of synapses from inhibitory local interneurons to projection neurons most reliably pro-
duced the observed shift in response to the mixture. These results are consistent with a model in which the antennal lobe acts to
filter olfactory information according to its relevance for performing a particular task.

Introduction

Animals must be able to perceptually filter out stimuli that are not rel
evant for survival. In general, infrequent stimuli are more informative
than stimuli that are common (Shannon, 1948). For example, when
faced with regular exposure to a stimulus that is not associated with
an important consequence, such as food or a painful stimulus, animals
typically decrease responsiveness to that stimulus. The decrease is
defined as ‘habituation’ when the behavioral response to the stimulus
is innate and the decrease can be not explained by motor fatigue. For
example, rats and mice investigate a new odor at first, but the inten
sity of investigation wanes with repeated exposure (Hunter & Mur
ray, 1989; Cleland et al., 2002). Fruit flies show innate avoidance
behavior to certain odors but the behavior habituates after massive
sustained exposure (Das et al., 2011). A related case of nonassocia
tive learning is latent inhibition (Lubow, 1973). In contrast to habitu

ation, animals are repeatedly exposed to a stimulus that does not at
first elicit a behavioral response. Latent inhibition becomes evident
only when the pre exposed stimulus is subsequently associated with
reinforcement in conditions that usually produce a robust conditioned
response. For example, after regular exposure to an odor honey bees
are slow to develop a conditioned response to that odor relative to
other odors (Chandra et al., 2010).
The neural mechanisms that underlie olfactory nonassociative

learning and memory have received relatively less attention than the
mechanisms for pavlovian and operant conditioning. However, there
is indication that the mechanisms for nonassociative learning are
complex and distributed in the brain. In mammals, components of this
plasticity can be found in early olfactory processing in the olfactory
bulb and piriform cortex (Wilson & Linster, 2008). At least part of
the neural mechanism responsible for short term olfactory habituation
lies in a homosynaptic depression of transmission from second order
mitral cells in the olfactory bulb to their targets in the piriform cortex,
and it depends on glutamate receptors on axon terminals of the mitral
cells (Linster et al., 2009). Prolonged or repeated exposure to odor
produces habituation that depends on NMDA receptors in the olfac
tory bulb network (Wilson & Linster, 2008).
Neural networks involved in early olfactory processing are func

tionally similar in insects and mammals (Hildebrand & Shepherd,
1997; Strausfeld & Hildebrand, 1999). Furthermore, this similarity is
most likely due to convergent evolution (Strausfeld & Hildebrand,
1999), which indicates that these neural networks reflect fundamental
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and broadly applicable solutions for olfactory encoding and plasticity.
However, this similarity remains to be thoroughly investigated, par
ticularly in regard to different types of plasticity. Here we investigate
whether odor exposure that is sufficient to produce latent inhibition in
the honey bee induces nonassociative modification of the neural net
works in the antennal lobe (AL), which is the functional analog to the
mammalian olfactory bulb. Using calcium imaging, we show that
after regular presentation of an odor the neural representation of that
odor is reduced in its ability to compete with that of a new odor when
both are presented in a mixture. This result implies that network level
interactions in the AL are modified by unreinforced exposure. Fur
thermore, we show that this competition is reflected in behavioral
overshadowing experiments. Finally, we use a computational model
of the AL to predict specific synaptic changes that modify competi
tive interactions in the network with the same results as observed
experimentally. Among the three conceivable hypotheses tested, the
simplest one, namely Hebbian plasticity on inhibitory synapses
towards the excitatory units, is the most likely mechanism.

Materials and methods

Animals

Honey bee (Apis mellifera carnica) pollen foragers (all female) were
collected at the entrance of the colony, briefly cooled and restrained
in individual Plexiglas stages suited for olfactory conditioning and
optical recordings (Galizia & Vetter, 2004). After recovery from
cooling, bees were fed 2 lL of a 1.0 M sucrose solution and
remained undisturbed until staining or until further feeding. All
imaging and behavior experiments were performed 1 day after cap
turing and restraining the animals.

Projection neuron staining

The head was fixed to the Plexiglas stage with soft dental wax (Kerr;
Sybron Dental Specialties, USA) in such a way that animals could
freely move antennae and proboscis. A rectangular window was cut in
the head capsule dorsal to the joints of the antennae and ventral to the
medial ocellus. The glands were carefully moved aside until the alpha
lobes in the brain were visible; these are easily recognisable and serve
as spatial reference to guide staining. Projection neurons (PNs) were
stained by backfilling with the calcium sensor dye FURA dextran
(potassium salt, 10 000 MW; Invitrogen, Eugene, OR, USA). The tip
of a glass electrode was coated with a bolus (approximately 50 lm
diameter) of fura dextran prepared in 3% bovine serum albumin solu
tion (Sigma Aldrich, St Louis, MO, USA). The coated electrode was
inserted into both sides of the protocerebrum dorsolateral to the alpha
lobes where the antennoprotocerebral tracts run between the medial
and lateral calyxes of the mushroom bodies (Kirschner et al., 2006).
Medial and lateral ACTs contain the axons of uniglomerular PNs (Abel
et al., 2001). The dye bolus dissolved into the tissue in 3 5 s and the
window was immediately closed using the same piece of cuticle that
had previously been removed. Eicosane (Sigma Aldrich) was used to
glue and seal the cuticle. Twenty minutes after staining the bees were
fed again until satiation with 1 M sucrose and left undisturbed until
next day. The dye was left to travel along the tracts for at least 12 h.
Before imaging, the antennae were fixed pointing towards the front
using eicosane, and body movements were prevented by gently com
pressing the abdomen and thorax with a piece of foam. The brain was
rinsed with Ringer solution (in mM: NaCl, 130; KCl, 6; MgCl2, 4;
CaCl2, 5; sucrose, 160; glucose, 25; and HEPES, 10; pH 6.7, 500 mO
smol; all chemicals from Sigma Aldrich) and glands and trachea cover

ing the ALs were removed. The ALs were examined for appropriate
staining and only animals that by visual inspection presented homoge
nous staining of all visually accessible glomeruli were used for experi
ments. To prevent brain movements during measurements a second
hole was cut ventrally to the antennae, and the compact structure of
muscles, esophagus and supporting chitin was lifted and put under
slight tension (Mauelshagen, 1993). Finally, the brain was covered
with Kwik sil (WPI) to further prevent movements and avoid desicca
tion during the experiment. After surgery animals were mounted in the
microscope and were allowed to recover for 20 min before imaging.

Imaging

Calcium imaging was done using a CCD camera (SensiCamQE;
TILL Photonics, Germany) mounted on an upright fluorescence
microscope (Olympus BX 50WI, Japan) equipped with a 209 dip
objective, NA 0.95 (Olympus), 505 DRLPXR dichroic mirror and
515 nm LP filter (TILL Photonics). Monochromatic excitation light
provided by a PolichromeV (TILL Photonics) alternated between
340 and 380 nm. Fluorescence was detected at a sampling rate of
5 Hz. Spatial resolution was 172 9 130 pixels binned on chip from
1376 9 1040 pixels, resulting in a spatial sampling of 2.6 lm per
pixel side. Exposure times were 8 and 2 ms for 340 and 380 nm
excitation light, respectively.
Animals underwent four imaging sessions, with an odor exposure

session between the first and second imaging sessions (Fig. 2A).
Each imaging session included six measurements of odor induced
activity in the AL: two measurements each of 1 hexanol, 2 octanone
and the binary mixture 1 : 1. The six measurements were presented
in random order and were separated by 1 min intervals. Ten minutes
after the end of the first imaging session animals underwent an odor
exposure session that lasted 40 min. The exposure session consisted
of 40 unrewarded stimulations with 1 hexanol or 2 octanone. Odor
stimulations lasted 4 s and the intertrial interval was 1 min. Three
complete imaging sessions were repeated 10, 40 and 70 min after
the end of the exposure session. The two measurements of each
odor within each session were used to test for reliability of signals
and were further averaged during analysis.

Imaging analysis

Image analysis was done using software written in IDL (Research
systems, CO, USA) by Giovanni Galizia and Mathias Ditzen (rou
tines can be requested from the authors). Each measurement consisted
of a double sequence of 50 fluorescence images obtained at 340 nm
and 380 nm excitation light (Fi340, Fi380, where i is the number of
the image from 1 to 50). For each pair of images Fi we calculated
pixel wise the ratio Ri (Fi340 nm/Fi380 nm) 9 100 and subtracted
the background ratio Rb, obtained by averaging the Ri values 1 s
immediately before the odor onset [Rb = 1/5 (R10 + … + R14)].
Resulting values, shown in the figure as DR, represent the change
from the reference window and are proportional to the changes in the
intracellular calcium concentration. Quantitative analysis of odor
induced activity patterns was based on calcium signals in identified
glomeruli. For this aim, glomeruli were identified on the basis of their
morphology and relative position using the digital atlas of the honey
bee AL as a reference (Galizia et al., 1999). The visualisation of
glomeruli was achieved by observing the raw fluorescence images
obtained at 380 nm excitation light, and we additionally used soft
ware written by Mathias Ditzen that allows a clear view of glomerular
shape and position. The software calculates images representing the
degree of correlation between neighboring pixels. As glomeruli
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respond as functional units, pixels stemming from the same glomeru
lus are highly correlated over time. In contrast, pixels from different
glomeruli are uncorrelated. This provides images in which glomeruli
are visible and clearly separated by contrasting boundaries. Figure 1A
shows examples of raw and correlation images used for glomeruli
identification. Eighteen glomeruli could be unequivocally identified
across all animals and thus were used for the present analysis. All
glomeruli are located in the dorsorostral side of the AL. We examined
activity in glomeruli 17, 23, 24, 25, 28, 29, 33, 35, 36, 37, 38, 42,
43, 47, 48, 49 and 52, which belong to tract 1 from the antennal
nerve, and glomerulus 45 from tract 3, according to the nomenclature
previously established (Flanagan & Mercer, 1989; Galizia et al.,
1999). Glomerular activation was calculated by averaging activity in
a square area of 9 9 9 pixels that correspond to 23.4 9 23.4 lm and
fits well within the boundaries of the glomeruli. Glomerular activity
in the present study refers to activity of the uniglomerular PNs that
innervate the selected glomeruli.

Principal component analysis (PCA)

Odor induced activity patterns were characterised in the present study
by measuring calcium signals in 18 identified glomeruli of the dorsal
side of the AL. Therefore, each data point, i.e. each odor at each time
point, is described by an 18 dimensional vector. We performed PCA
(SPSS Inc.) to ease visualisation of the different activity patterns
evoked by the three odors and also to show evolution of the patterns
across time. The data set was reorganised as a single 2 D matrix
composed of the three odors and all time points (frames) between
600 ms before odor onset and 2000 ms after odor offset as rows and
18 glomeruli as columns (example of a data point: 1 hexanol at
500 ms: glom17, glom23,…,glom52). This matrix was subjected to
PCA and varimax rotation. The two first principal components (PCs)
explain 92% of variance in this example and clearly separate 1 hexa
nol, 2 octanone and the mixture. The data set of all 1 hexanol exposed
bees and all 2 octanone exposed bees were correspondingly averaged
to get two ‘average bees’ (see Methods in Fernandez et al., 2009), the
1 hexanol bee and the 2 octanone bee, respectively. Each of the two
average bees have data points that corresponded to the three odors at
each time point of the measurement and at four sessions (before expo
sure and 10, 40 and 70 min after exposure). The data sets correspond
ing to the average bees were organised in a 2 D matrix, configured
with each data point (odor/session/frame) as rows and 18 glomeruli as
columns (example of one data point: 1 hexanol/10 min session/at
500 ms: glom 17; glom 23; …; glom 52). The matrix was subjected to
PCA and varimax rotation to reduce the 18 dimensions. The first first
PCs explain 97 and 95% of variance in the groups of bees exposed to
2 octanone and 1 hexanol respectively. Note that PCA performed on
data from the average bees is used only for visualisation of the effect,
while analysis and conclusions are strictly based on correlation analy
sis as explained in the next section.

Pattern similarity assessment

Odor elicited patterns are represented as vectors with 18 elements and
each element constitutes the glomerular activity averaged during 1 s
of odor stimulation. Euclidean distances or correlation coefficients are
normally valid parameters used to evaluate similarity between pat
terns. However, the accuracy of the two parameters as predictors of
perceptual similarity between two odors might change depending on
features of the odors that are to be compared. In a preliminary analysis
we compared the outcomes of the two parameters for the three possi
ble comparisons, i.e. 1 hexanol vs. 2 octanone, 1 hexanol vs. mixture

and 2 octanone vs. mixture. For the odors, concentrations and mixture
compositions used in the present work, Pearson’s correlation coeffi
cient was a better predictor of the perceptual similarity than the
Euclidean distances. Thus, throughout this study we used the Pearson
correlation coefficient as the measure of similarity between the activity
patterns evoked by two odors in the same animal and during the same
session. In order to analyse whether the unrewarded exposure session
biased the representation of the mixture towards or away from the rep
resentation of the components, we calculated the correlation coeffi
cients between the mixture and the pure components for each bee and
each session. Subsequently, the correlation values were categorised
according to the odor used in the exposure session. Statistical analysis
was based on a two way repeated measures ANOVA and contrasts
between all post exposure sessions and the pre exposure session. For
ANOVA, correlation values were grouped as exposed mixture or as
novel mixture. Sessions were considered as repeated factors for statis
tical analysis. No significant difference was found between sessions,
either for the exposed or the novel odors as separate factors. However,
the interaction term and interaction contrasts between the pre exposure
session and the post exposure sessions were statistically significant.

Electroantennogram (EAG)

EAG recordings were performed to test for a possible decrement in
olfactory input after exposure training. Honey bees were caught,
restrained in Plexiglas holders and fed following the same procedure
described for the imaging experiments. The head was fixed to the
holder with wax and a 25 lm uninsulated silver wire was inserted
into the right eye and used as ground electrode during recordings.
The position of the antennae was fixed with eicosane and the tip of
the left antenna was cleanly cut. A glass microelectrode filled with a
0.1 M KCl solution mounted on a WPI electrode adapter was
inserted through the open tip of the antenna. The EAG signal was
fed into a DAM50 Bio Amplifier (WPI). The output was digitised
with an analog digital converter (Lab Trax 4; WPI) and recorded
for offline data analysis (Data Trax 2; WPI). Stimulation conditions,
odor concentration, stimulus duration and odor sequence were iden
tical to those used for imaging experiments. Only two recording ses
sions were performed and they corresponded to the first and second
sessions of the imaging experiments. These sessions were separated
by 60 min. The first session finished 10 min before starting the 40
min exposure session and the second recording session started
10 min after the end of the exposure session. The exposure session
that followed was identical to the exposure session for the imaging
experiment. Amplitude of odor induced signals was calculated by
subtracting the potential recorded before odor onset. All of the anal
yses were based on the average of two measurements per odor and
per session. Statistical analysis was based on two way repeated mea
sures ANOVA with odor as an independent factor (novel odor/exposed
odor/mixture) and sessions as a repeated factor.

Behavior

Honey bees were exposed to an odor and later conditioned to a mix
ture that contained that odor in order to measure whether exposure
affects learning performance to the mixture. Animals were captured,
restrained and fed following the same procedures used in imaging
and EAG experiments. One day after capture, animals were divided
into three groups. Two groups underwent an exposure session iden
tical to the exposure session used in imaging experiments. The
exposure session lasted 40 min and consisted of 40 9 4 s unre
warded stimulations with 1 hexanol or 2 octanone. A blank group
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FIG. I. Calcium imaging of projection neurons in the honey bee AL (A) View of the AL after staining the PNs. The picture shows the dorsal surface including 
18 identified glomeruli (Galizia et al., 1999) used for the imaging analyses. (Left) Ba.<;al fluorescence images, obtained with 380 nm excitation light and LP510 
emission filter, allowed identification of glomeruli according to size, shape and position by comparison with the published honey bee AL atlas (Flanagan & 
Mercer, 1989; Galizia et al., 1999). Basal fluore_<;eence images were also used for verification of homogeneous staining in all glomeruli used for analysis. (Cen 
ter) Correlation images (see Materials and Methods) clearly define boundaries between glomeruli and thus were used as an additional tool to verify glomeruli 
identification. Darker glomeruli do not indicate lack of staining (controUed for from the images such a.~ the one in the left panel); these glomeruli were not acti 
vated by the odors and consequently produce a low correlation value with neighboring pixels). (Right) Schema of the dorsal surface on the honey bee AL show 
ing 18 glomeruli used in our analyses (AN, antennal nerve). (B) Color coded (see scale) changes in calcium levels averaged betv;een 400 and 800 ms after 
odor onset. The figures show distinct but slightly overlapping spatial activity patterns for each of the three odors. (C) Glomerular activity over time to show spa 
tiotemporal activity patterns. The same line color acros.~ figures represents the change in ratio over 6 s (I s before stimulation through 5 s after) in a single 
identified glomerulus for each of the three odors. (D) Calcium responses for each of the 18 glomeruli averaged over I s of stimulation ordered from the highest 
response to the lowest for the mixture (middle figure). The same ordering was maintained for 1 hexanol (left) and 2 octanone (right) to emphasise changes in 
activity in each glomerulus for each of the odors compared to the mixture. Error bars represent SD of two measurements. R values in D refer to the Pearson 
correlation coefficients used to compare pairs of odor patterns within animal and within se.~ion . (E) PCA (see Materials and Methods) used to show the evolu 
tion of the activity patterns over 200 ms lime steps during odor stimulation in one animal (Galan et al., 2006; Fernandez et al., 2009) for I hexanol (blue), the 
mixture (green) and 2 octanone (red). With the onset of odor stimulation the transients for the pure odors project along each PC axis and reach maximal separa 
tion between 400 and 600 ms (Fernandez et al., 2009). After odor termination the tmnsients loop back and return to origin. (F) Mean ± SE of the correlation 
coefficients indicated in D, for 17 animals prior to any treatment. The correlations between the pure components and the mixture are significantly higher than 
the correlation between the pure odorants; different letters on tops of the bars indicate significant differences at P < 0.01. 

was manipulated in the same way but received o nly clean air during 
the whole exposure session. Fifteen minutes after the end of the 
exposure session all groups were subjected to olfactory c:onditioning 
of the proboscis extension reflex (Bitterman et aL, 1983), during 
which all animals were identically conditioned to a I : I mixture of 
I hexanol and 2 octanone over three trials. During conditioning, ani 
mals received a sucrose reward 3 s after odor onset. Reward con 
sisted of first touching the antennae with a 2.0 M sucrose water 
solution, which elicited proboscis extension, and then feeding with 

0.4 p.L of the solution. The intertrial interval was 10 min. Fifteen 
minutes after the end of the conditioning session, the c:onditioned 
response was assessed in a test session using I hexanol or 2 octa 
none. Each animal was tested only once. Proboscis extension was 
recorded as a binary variable (proboscis extension or not) during the 
training and test trials. Extension of the proboscis beyond the virtual 
line between the open mandibles during odor presentation was effec 
tively counted as proboscis extension. On acquisition trials, the 
response was determined for each subject as positive if the subject 
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FIG. 2. Effect of odor exposure on odor induced spatiotemporal activity in the AL. (A) Experimental protocol: each imaging session includes two stimulations 
each with I hexanol , 2 octanone and the mixture (I : I) dislributed in random order and separated by a I min interstimulus interval (lSI). The exposure con 
sisted of 40 x 4 s presentations of either I hexanol or 2 octanone separated by a !-min lSI. The exposure se.~sion started 5 min after the end of the first imag 
ing se-~ion. Odor representations were measured again in the second, third and fourth imaging session performed 10, 40 and 70 min after the end of the 
exposure, respectively. (B) Odor elicited responses from 18 glomeruli are represented using PCA. The animals exposed to I hexanol (n 8) and to 2 oclanone 
(n 9) were separately averaged to obtain two average bees with 18 glomeruli each (see Material~ and Methods; also Fernandez et aL, 2009). The 18 dim en 
sions used to describe odor transientS were reduced to its first two PCs (95 and 97% of the total variance respectively). Bold lines indicate the first imaging ses 
sion, which was done before the exposure session. Thin lines belong to the second, third and fourth imaging sessions performed after exposure. We used PCA 
for visualisation only. Statistical analyses as well as conclusions are based on the absolute correlation values presented in Fig. 3. 



extended its proboscis during odor stimulation and before the uncon
ditioned stimulus presentation. These data are plotted as the percent
age of subjects that responded to the mixture on each trial during
training or to the single odors during test trials.

Odor stimulation

Odors used for stimulation were the aliphatic alcohol 1 hexanol and
the ketone 2 octanone (98%; both TCI America, Portland, OR,
USA), alone or combined in binary mixtures 1 : 1. Odors were
diluted from purity 1/100 or 1/10 in mineral oil (M 8410; Sigma
Aldrich) for imaging or behavior experiments. The output of the
odor delivery device, for both behavioral and imaging experiments,
was positioned 2 cm away from the animal’s head and the air
stream was aimed toward the antennae. During the periods without
odor stimulation a continuous charcoal filtered air stream (25 mL/s)
ventilated airspace around the antennae. A constant exhaust removed
odors from the arena. The odor cartridges consisted of a 1 mL glass
syringe containing a filter paper strip (0.5 9 8 cm) loaded with
either 5 lL 1 hexanol solution + 5 lL mineral oil, 5 lL 2 octanone
solution + 5 lL mineral oil or 5 lL 1 hexanol solution + 5 lL 2
octanone solution. Three way valves (LFAA1200118H; The LEE
Company, Essex, CT, USA) controlled the onset of the airflow
through the odor cartridge. When the valve was open, the air inside
the cartridges was pushed into the continuous air stream in a mixing
chamber 2 cm before the output of the odor delivery device. During
behavior experiments, opening and closing of the valves was trig
gered by a programmable controller (Automation Direct) and the
odor duration was 4 s. During imaging experiments, the opening of
the valve was synchronised with the optical recordings by the imag
ing acquisition software TILLVISION (TILL Photonics). In an earlier
study (Fernandez et al., 2009) we found that odor durations of
600 ms or longer leads to odor recognition independent of the dura
tion of stimulations. This allowed us to reduce the odor stimulation
during the imaging sessions to only 1 s and shorten the whole dura
tion of the imaging protocol. This shortening is important as the UV
light (340 and 380 nm) needed for the calcium imaging recordings
is targeted to the animals brain and long exposures lead to cell dam
age by phototoxicity. The odor delivery device had eight indepen
dent and identical channels, each of them composed of a valve
attached to an odor cartridge. Between experiments, odors were
rotated to balance possible differences between channels.

Conductance-based model

The model network consists of 20 PNs and 20 local neurons (LNs)
wired according to the generative model shown in Fig. 6A. The
basic structure of the model (Bazhenov et al., 2001) was used with
some modifications to better account for the calcium current. The
LNs receive input from olfactory receptor neurons (ORNs), other
LNs and PNs (Distler et al., 1998; Wilson et al., 2004). The PNs
integrate the incoming ORN and LN activity as well as the sparse
input from other PNs. The membrane potential VPN of each PN and
LN is modeled by the differential equation

Cm
dVPN=LN

dt
¼ g� VPN=LN E

� �
INa IK ICa IKCa Isyn Istim

where the reversal potential was E 55 mV, the membrane capaci
tance was Cm 0.1 nF and the membrane conductance was
g 0.04 lS. Note that LNs in the honeybee are spiking neurons, in
contrast to the LNs of the locust AL.

Intrinsic currents

INa and IK are described by IX ¼ gXnNhMðVPN=LN EXÞ with the
gating variables n and h evolving according to dn=dt ¼
ðn1ðVPN=LNÞ nÞ=snðVPN=LNÞ and dh=dt ¼ ðh1ðVPN=LNÞ hÞ=sh
ðVPN=LNÞ, both within the interval [0,1].
For the fast sodium current INa, the parameters were gNa 5 lS,

N 3, M 1, ENa 50 mV, sn ¼ 3=ðanðVPN=LNÞ þ bnðVPN=LNÞÞ,
n1 ¼ anðVPN=LNÞ=ðanðVPN=LNÞ þ bnðVPN=LNÞÞ, sh ¼ 3=ðahðVPN=LNÞ
þbhðVPN=LNÞÞ and h1 ¼ ahðVPN=LNÞ=ðahðVPN=LNÞ þ bhðVPN=LNÞÞ,
where anðVPN=LNÞ ¼ 0:32 � ðVPN=LN þ 42Þ=ðe�0:25�ð42þVPN=LNÞ 1Þ,
bnðVPN=LNÞ ¼ 0:28 � ðVPN=LN þ 15Þ=ðe0:2�ðVPN=LNþ15Þ 1Þ, ahðVPN=LNÞ
¼ 0:128 � e�ð38þVPN=LNÞ=18 and bhðVPN=LNÞ ¼ 4=ðe�0:2�ð15þVPN=LNÞ þ 1Þ.

For the fast potassium current IK, the parameters were
gK 1 lS, N 4, M 0, EK 95 mV, sn ¼ 3=ðanðVPN=LNÞ
þbnðVPN=LNÞÞ and n1 ¼ anðVPN=LNÞ=ðanðVPN=LNÞ þ bnðVPN=LNÞÞ,
where an ðVPN=LNÞ ¼ 0:32 � ðVPN=LN þ 30Þ=ðe�0:2�ðVPN=LNþ30Þ 1Þ
and bnðVPN=LNÞ ¼ 0:5 � e�ðVPN=LNþ35Þ=40. The intrinsic calcium cur
rent is described using the Goldman Hodgkin Katz formalism due
to the large differences in calcium concentration between inside
and outside the cell. If we assume that the calcium differences are
always large we can write ICa ¼ 0:2n3hVPN=LN=ð1 e2VPN=LN=24:42Þ
(Huerta et al., 2000; Szücs et al., 2009) where the gating variables
n and h satisfy the differential equations above with
the parameters sh ¼ 20 19:9=ð1þ eðVPN=LN�40:1Þ=8Þ, n1 ¼ 1=ð1þ
eð�VPN=LN�27:1Þ=7:18Þ, sh ¼ 30þ 100=ð1þ eðVPN=LNþ50:1Þ=5Þ and h1 ¼
1=ð1þ eðVPN=LNþ27Þ=3:5Þ.
The calcium dependent potassium current was modeled by IKCa ¼

0:15ðVPN=LN þ 95Þð½Ca�4=ð½Ca�4 þ K4
CaÞÞ, where KCa 0.5 lM. Here,

[Ca] denotes the calcium concentration, which is described by
a first order kinetic equation as follows: d½Ca�=dt ¼ 0:001ð4ICa
0:42½Ca� þ 0:1Þ. To stay consistent with the experimental calcium

measurements, the read out from the PN was made through the cal
cium concentration.

Synaptic currents

The stimulus current Istim to i th PN was considered to be a current
pulse of the ORN to which the PN is attached (as shown in
Fig. 6A). The synaptic current into the i th PN was the sum of cur
rents from adjacent inhibitory LNs. For each adjacent LN j, the syn
aptic current was described by Ijsyn ¼ gjiðVi

PN þ 80Þ=
ð1þ eð0:5�Vj

LNÞ=7Þ, where gji is the conductance associated with the
synapse from the j th LN to the current (i th) PN, and Vj

LN is the
membrane potential of the j th LN. For each excitatory synapse
(arriving from the j th PN), the synaptic current component was
described by Ijsyn ¼ gjirðV þ 70mVÞ, where gji denotes the conduc
tance of the synapse (now arriving from j th PN) and r is the bound
receptor state, which is subject to the dynamics dr=dt ¼ a � ½T�
ð1 rÞ b � r as proposed in Destexhe et al. (1994). Here, [T]
denotes the transmitter concentration in the form of a pulse, that is,
[T] 1 lM within the first 2 s following a spike in the presynaptic
PN, and [T] 0 otherwise. The rise and decay constants a and b
were selected as 10�4/ms/lM and 2 9 10�4/ms/lM, respectively.

Firing-rate model

A firing rate model was used to concentrate on the role of the syn
aptic transmission without taking into effect the intrinsic dynamics
of the neurons. The rate model was used as it allows more effective
evaluation of which aspects of the connectivity and its plasticity are
relevant to explain a given phenomenon. As rate model we use the
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well known Wilson Cowan rate model (Wilson & Cowan, 1972).
This simple model consists of NPN excitatory PNs and NLN inhibi
tory LNs, units whose activities evolve according to

dxi
dt

¼ H
XNLN

j 1

wEI
ij � yj þ Ei Sð Þ

 !
; i ¼ 1; . . .;NPN;

dyi
dt

¼ H
XNPN

j 1

wIE
ij � xj

XNLN

j 1

wII
ij � yj þ Ii Sð Þ

 !
; i ¼ 1; . . .;NLN;

respectively. Here Θ(�) denotes the piecewise linear activation func
tion. The connectivity and conductance values were generated by a
Bernoulli process, which assigned to each element of the matrices
WEI the value 1.0 with probability 0.5 independently, or 0 other
wise. The second connectivity matrix WIE was generated in the
same way for the conductance value 0.5. WII was set with probabil
ity of 0.4 and conductance of 0.5. The stimulus was injected into
the network through the PNs with Ei(S) and LNs using the term
Ii(S). This function generates an arbitrary pulse value of 5 for the
pure odor A and for the pure odor B, reaching a different subset of
PNs for different odors (note that the arbitrary value does not
change the results). It is set to 0 when there is no odor present at
the input.

Synaptic plasticity

The firing rate model and the conductance based model were used
to test three different hypotheses of synaptic plasticity that may
account for the changes observed in the representation of the mix
tures: they were plasticity in synapses: (i) from LNs to PNs; (ii)
from PNs to LNs; and (ii) from LNs to LNs. If the observed
changes could not be reproduced using simple models and basic
plasticity rules, then the mechanisms of synaptic plasticity that we
propose may not be sufficiently general. In this regard, note that the
model’s dynamics are driven by intrinsic elements of the AL net
work and direct inputs from the ORNs. The model does not con
sider feedback from other brain regions (Rybak & Menzel, 1993;
Kirschner et al., 2006; Hu et al., 2010) and it does not consider
modulatory inputs (Hammer, 1997) that are needed for associative
learning.

Results

Odor exposure changed competition between components in
a mixture

Our previous analyses of nonassociative olfactory conditioning in
honey bees have shown that 20 or more presentations of an odor
without reinforcement, at 30 s or 5 min intervals, delays subsequent
learning of an association of that odor with sucrose reward (Chandra
et al., 2010). We set out to evaluate whether the neural basis for this
nonassociative conditioning, or at least a component of it, might
reside in the first synaptic relay for olfaction in the brain, the AL.
We employed a well established method for using a calcium indica
tor to backfill axons of the PNs that innervate identified glomeruli on
the dorsal surface in the AL (Fig. 1A; also Sachse & Galizia, 2002).
This method has revealed robust odor specific spatiotemporal activity
patterns that reflect differential activation of PNs during and shortly
after odor stimulation (Fig. 1B E; also Galan et al., 2006; Fernandez
et al., 2009). These ‘transients’ define a sequence of activity patterns

across glomeruli of the AL. The activation of glomeruli changes
from one time point to the next, and the identity of the odor can be
defined by the identity of the activated glomeruli, their relative acti
vation and the sequence of states in the transient. Mixing two pure
odorants produces a graded change in activity that is proportional to
the mixture (Fernandez et al., 2009). Binary mixtures that are biased
toward one component (e.g. 9 : 1 or 7 : 3) are statistically more sim
ilar to the dominant component. Furthermore, differentially reinforc
ing two mixtures increases the separation of the transients for those
mixtures (Fernandez et al., 2009), which indicates that associative
plasticity influences odor representations in the AL.
We chose two odors (1 hexanol and 2 octanone) used in our previ

ous analysis of plasticity in the AL (Fernandez et al., 2009) because
they elicit distinct but slightly overlapping activity patterns (Fig. 1B
D; also Sachse et al., 1999). A 1 : 1 mixture elicits an activity pattern
that is intermediate to the components. Using PCA to reduce the num
ber of dimensions from 18 to 2, we plotted this activity over 200 ms
time steps from shortly before odor presentation through several steps
after termination of the stimulus (Fig. 1E shows transient patterns
from a single animal). The pattern of activity through time produces a
transient through this two dimensional space that projects out and
begins to return before the odor is terminated (Fdez Galán et al.,
2004; Mazor & Laurent, 2005; Fernandez et al., 2009). The Euclidian
distance between corresponding time points across the transients
reaches a maximum approximately 400 600 ms after odor onset
(Fernandez et al., 2009). From background activity near the origin,
the transients for the two pure odors run approximately parallel to each
axis whereas the transient for the mixture projects at an angle interme
diate to the other transients (Fig. 1E and Fernandez et al., 2009). The
similarities between the patterns elicited by the pure odorants and the
mixture are reflected in the Pearson correlation values between the
glomerular activity patterns (Fig. 1D and F). Each pure odorant is
more similar to the mixture than the pure odorants are to each other.
Figure 1F averages the correlation coefficient for the three odor pairs
obtained for 17 animals (different letters indicate significant differ
ences by LSD contrasts P < 0.01 after significant ANOVA:
F2,48 19.49, P < 0.0001).
Our experiments included four identical imaging sessions

(Fig. 2A). The first imaging session occurred prior to exposure treat
ment and was used to establish the AL response patterns prior to
training. Then we presented animals with 40 unreinforced exposures
to an odorant. This treatment is sufficient to decrease the probability
that the odor will elicit a conditioned response when associated with
reinforcement (Chandra et al., 2010). The exposure treatment was
followed by three additional test series performed 10, 40 and
70 min after the end of the exposure treatment. We could then com
pare the responses among the pure odorants and the mixture during
each of the four test sessions.
Unreinforced exposure changed the way the AL network pro

cessed odors. The most dramatic effect was a shift in the transient
for the mixture (Fig. 2B). After exposure to a pure odor, the tran
sient for the mixture shifted away from that odor and toward the
pure odor that had not been exposed. The effect was the same for
exposure to 1 hexanol (left panel) and 2 octanone (right panel).
This noticeable shift in the trajectory of the transients was

reflected in the change in the correlation between each pure odor
and the mixture. Figure 3A and B show the actual correlation values
between pure odors and the mixture before (bold diamonds) and
after (small diamonds) exposure for each animal. The correlation
between a pure odor and the mixture is variable from animal to ani
mal before exposure treatment. However, after exposure the
response to the mixture became more correlated to the novel (non
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exposed) odor in 12 of 17 animals (Fig. 3A). Furthermore, the mix
ture became less correlated to the exposed odor (Fig. 3B) in 13 of
17 animals. The mean change (± SE) across animals in the correla
tion between the mixture and the two odors (novel and exposed) is
shown in Fig. 3C. At all three post exposure test times the novel
odor became more similar to the mixture and the exposed odor
became less similar. Statistical analysis was based on the raw corre
lation values presented in Fig. 3A and B. For two way ANOVA we
considered Odor condition (novel or exposed) as one factor and Ses
sion as the second and repeated factor. No significant effect was
found either for odor condition (F1,32 0.222, NS) or for session
(F3,96 0.378, NS); however, the interaction term was highly sig
nificant (F3,96 6.351, P 0.001). All interaction contrasts compar
ing pre exposure measurements vs. post exposure measurements
were significant: pre vs. post 10 min (F1,32 5.075, P 0.04); pre
vs. post 40 min (F1,32 10.292, P 0.003) and pre vs. post
70 min (F1,32 12.038, P 0.002).

The change in the mixture representation was not a
consequence of sensory adaptation

In order to evaluate whether the changes that we observe have
arisen from adaptation of sensory receptors on the antennae, we
performed the following additional analysis and experiments. First,
we calculated the global AL response for each odor as the sum of
the activity elicited in all glomeruli (Fig. 4A). The rationale behind
this analysis is that if sensitivity to a mixture component is reduced
as a consequence of sensory adaptation, then PN activity should
reflect the input reduction as though a lower odor concentration had
been presented (Sachse & Galizia, 2003). A reduction in signal
because of sensory adaptation should therefore be pronounced for
the odor used for unreinforced exposure. As no differences were
found for 1 hexanol or 2 octanone exposed bees, the data for the
exposed odor, novel odor and mixture were pooled. Figure 4A
shows the global response in the AL across four sessions. The data
were not normalised to avoid occlusion of changes between ses
sions. Instead, the data are shown as absolute values of the sum of
calcium responses in all measured glomeruli. There was no detect
able reduction in the global AL activity for the exposed odor that
would arise from sensory adaptation. The statistical analysis based
on two way ANOVA with Odor as one factor and Session as the
repeated factor showed a significant effect of odor (F2,63 6.6,
P < 0.01). This significant result is based on significant differences
among the activity elicited by the mixture vs. pure odors (Tukey
HSD contrasts, P < 0.05 in both cases) and not between pure odors
(P 0.98). This stronger response to the mixture is consistent with
the fact that the activity elicited by the mixture involves the sum of
glomeruli activated independently by each pure odor, as has been
previously shown using imaging techniques that reflect activity in
sensory neurons (Joerges et al., 1997; Deisig et al., 2006) and in
projection neurons (Deisig et al., 2010). Differences among sessions
were statistically significant (session factor, F3,189 5.02,
P < 0.01). Tukey HSD contrasts showed significant differences
between the first and the third, and between the first and the fourth
sessions (P < 0.05 in both cases). The increase in activity across
sessions was independent of the odor and not consistent with sen
sory adaptation. Finally, the interaction term was not significant
(F6,189 0.08, P 0.99), revealing that the observed changes along
sessions were independent of the treatment.
Second, we performed EAG measurements to directly measure

summed afferent activity from sensory neurons into the AL. We per

formed two recording sessions that corresponded to the first and sec
ond session of the imaging experiments (Fig. 4B). The first
recording session finished 10 min before the exposure protocol. A
group of five bees was exposed to 1 hexanol and a second group of
five bees was exposed to 2 octanone. The second recording session
was performed 10 min after the end of the exposure protocol. If
sensory adaptation was responsible for the results reported in the
previous sections then the adaptation should be clearly expressed
during this session. As there was no difference between the two
groups of bees, and the amplitude of EAG signals evoked by 1 hex
anol and 2 octanone were similar, we regrouped the data from 1
hexanol and 2 octanone treated bees into novel, exposed or mixture
odor, as we had in the previous experiments. No change was
observed 10 min after the end of the exposure for any of the odors
(mixture, novel or exposed odors; Fig. 4B). Statistical analysis based
on two way ANOVA with Odor as one factor and Session as repeated
factor revealed no effect of the main factors or for the interaction;
session factor (F1,27 0.52, NS); odor factor (novel, exposed or
mixture, F2,27 3.18, NS) and interaction term (F2,27 0.43, NS).
The tendency to a stronger response obtained by stimulation with
the mixture (Fig. 4B) is consistent with more sensory neurons
recruited under this condition.
Finally, the level of the response measured during the second ses

sion may have been the sum of two separate effects, one related to
the odor exposure and the other related to the 60 min gap between
sessions. Therefore as a control in a separate set of animals we mea
sured the responses during both sessions without exposing the ani
mals to any treatment during the 60 min interval (Fig. 4C). Two
way ANOVA with Odor (pure or mixture) as one factor and Session
as repeated factor revealed no effect for either the main factors or
the interaction term (odor, F1,13 1.01, NS; session, F1,13 0.14,
NS; interaction term, F1,13 0.03, NS).
In summary, both the global activity and EAG experiments failed

to provide evidence of reduced sensory input for the exposed odor
that could provide an alternative account for the shift observed in
the representation of the mixture after exposure.

A novel odor more easily overshadowed an exposed odor

The imaging data indicate that the mixture became perceptually
more similar to the novel odor as a result of exposure. Therefore, a
novel odor should be more capable of overshadowing a preexposed
odor in a behavioral test. We tested this possibility using a proboscis
extension response conditioning procedure for restrained honey bees
(Fig. 5A; also Bitterman et al., 1983). Three groups of bees under
went exposure protocols of 40 unreinforced presentations at 1 min
interstimulus intervals, as in the exposure treatments used in the pre
vious sections. One group was exposed to 1 hexanol, another group
was exposed to 2 octanone and a third group was exposed to clean
air as control. Most odors elicit proboscis extension response with a
low probability on the first trial (approximately 10% of honey bees
show a response prior to associative conditioning). The genesis of
these spontaneous responses is still not well understood (Smith
et al., 2006) but this probability was low and equivalent across
odors we selected and treatment groups in our study. Furthermore,
these responses completely disappear after 40 preexposures (Chan
dra et al., 2010). Therefore, we did not record proboscis extension
response during the unreinforced exposure. We followed the unrein
forced exposure with three conditioning trials during which the
1 : 1 mixture was reinforced with sucrose in a way that produces
robust conditioned responding to the odor. Statistical analysis of
performance during conditioning was based on two way repeated
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FIG. 3. Correlation coefficients between the mixture and the pure odors before and after exposure. (A) Absolute Pearson correlation coefficients between the 
activity patterns elicited by the novel odor (odor not used during exposure) and the mixture for each individual bee (n 17). Bold blue diamonds correspond to 
the correlation value before exposure. Small diamonds correspond to the correlation values after exposure. Numbers highlighted in blue indicate bees in which 
Lhe average of the correlation from the three post exposure sessions was higher than the correlation in the initial session. (B) Absolute Pearson correlation coef 
ficients between the exposed odor and the mixture for each individual bee. Bold red diamonds correspond to the measurement performed before exposure and 
small diamonds to the measurements performed after exposure. Numbers highlighted in red indicate bees in whicb the average of the correlation values obtained 
in the three post exposure sessions was lower than the correlation in the initial session. Stati~tical analysi~ was strictly based on raw correlation values a.~ they 
are shown in figures A and B. Two factor repeated measures ANOVA: factor l, novel or exposed odor, NS; factor 2, (repeated mea.~urement) Session, NS; interac 
tion, P 0.001. (C) Data from A and B plotted as the net change in the correlation along the experiment. The panel shows the average and SEM of the differ 
ence between each post exposure session and the session before exposure (11 17). The change in correlation was calculated within each bee by subtracting the 
correlation value obtained in the first test session from the values obtained in the post exposure sessions. 

measures ANOVA: "Trial" as the repeated factor showed a significant 
effect of training (F2 ;266 = 73, P < 0.0001), the "group" factor and 
the "interaction term" were not significant (Fu33 = 0.39 and F4,266 

= 0.7, respectively). Thus, honey bees in all three groups learned to 
respond equally well to the mixture (Fig. SB). 

Finally, after conditioning to the mixture we tested the response 
to each pure odor to evaluate the perceptual similarity of the mixture 
to the components. The responses to pure odors during the test 
depended on the exposure treatment Honey bees responded equally 
to each of the pure odors after exposure to air (Fig. SC, middle), 
which is the typical result for these odors in this protocol. This 

response after mixture conditioning is typically lower than after con 
ditioning to the pure odor (Smith, 1998), which indicates overshad 
owing. However, overshadowing is symmetric for animals that were 
pre exposed to clean air. In contrast, exposw-e to odor prior to mix 
ture conditioning caused overshadowing to become asymmetric. 
After exposure to I hexanol, the strongest response occurred to 2 
octanone after mixture conditioning (Fig. SC, left). In contrast, the 
strongest response occuned to 1 hexanol after exposure to 2 octa 
none (Fig. SC, right). In Fig. SD the data obtained during testing is 
shown !md analysed independently of the odor identity and only 
based on the condition of the odor in the mixture, i.e. exposed odor, 
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FIG. 4. Evaluation of sensory adaptation as a possible basis for the effect in the AL. (A) Global AL activity elicited by the exposed odor, the novel odor and 
the mixture along all sessions. The figure shows the sum of the calcium responses in the 18 measured glomeruli . No differences were found between I hexanol 
and 2 octanone exposed bees (data not shown). Data were therefore pooled for the exposed odor, novel odor or mixture and analysed along sessions. Statistical 
significance P < 0.01 for both pure odors against the mixture and P < O.oi for first session against the third, and between fourth sessions for all odors; interac 
tion not significant. The differences reported along sessions were not specific for the exposed odor. (B) EAG was performed for the mixture and the pure odors 
10 min before and 10 min after the exposure protocol, coincident in time with the first and second session of the imaging experiments. Responses pre vs. post 
were not significantly different (n 10 bees). (C) A group of animals underwent two EAG sessions separated by 60 min, with no exposure protocol in 
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bees). 

novel odor (for an odor accompanying an exposed odor) or any 
odor in case of the blank group. 

Overall, the response to an odor after conditioning to a binary 
mixture containing that odor depended significantly on whether or 
not animals had been exposed to that odor without reinforcement 
(Fig. 5D, left column). Moreover, the response to a novel odor com 
bined in a mixture with an exposed odor was enhanced (Fig. 5D, 
right column). The Kruskal Wallis test showed statistical differences 
among responses elicited by the three odor conditions shown in 
Fig. 5D (F2, 133 3.13, P < 0.05). Further statistical analysis using 
pairwise chi square comparisons showed significant differences only 
between the novel and the exposed condition (P 0.014). The 
observation that learning scores for odors of the novel and the 
exposed condition were not statistically different from the learning 
scores for odors in the blank group but they were different from 
each other suggests a mechanism that biases learning of the novel 
and the exposed odor in opposite directions. In summary, this shift 
in the perceptually dominant component of the mixture toward the 
new odor was consistent with the imaging data. 

LN-to-PN connections were the most likely targets for 
nonassociative plasticity 

The imaging data and the resulting change in perception of the mix 
ture imply an alteration in competitive interactions within the AL 
network. We used a well established conductance based model of 
transient dynamic coding in the insect AL (Bazhenov et al., 2001) 
and a rate model (Huerta & Rabinovich, 2004) to explore which 

synapses might be the most likely targets for future investigation. 
The network consisted of two clusters of 20 inhibitory LNs and 20 
PNs (Fig. 6A). The odor inputs were modeled by injecting current 
to a particular set of PNs for odor A and another set of PNs for 
odor X. The level of overlap between the two PN groups was varied 
from 1 to 5 PNs in order to simulate odor pairs with different 
degrees of overlap. Each LN received inputs in a nonselective man 
ner. In order to be consistent with the imaging data, the activity of 
PNs was monitored by the level of calcium set by the term lea in 
the model (see Materials and Methods). 

For consistency with the imaging experiments, the model 
employed a pretraining phase in which we used the initial netwOik 
as it was generated by a Bernoulli process (Huerta & Rabinovich, 
2004). The 20 dimensional PN (calcium) responses were recorded 
for pure odors A, X and the mixture. Plasticity was not applied at 
any synapse in this phase. We adopted the stimulation protocol used 
in the imaging experiments: the pure odor A, the pure odor X and 
the mixture (A + X) were applied sequentially to the netwOik in a 
random order. These stimuli were encoded in a 20 dimensional bin 
ary vector with its entries denoting the presence or absence of the 
pure odors at the input. In each presentation, the network was stimu 
lated with its corresponding PN activation group for 2 s and relaxed 
for the following 5 s until the onset of the next stimulation. This 
phase of the simulation allowed us to generate the 20 dimensional 
calcium trajectories representing the three types of stimuli and to 
form the PC space where we carried out the analysis. 

In the training phase, the synaptic efficacy of a subset of LN to 
PN synapses was modified. The synapses affected in each presenta 
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FIG. 5. Effect of repeated odor exposure on perception of an odor mixture. (A) Schema showing the experimental procedure. Exposure session: 4() unrewarded 
stimulations with I hexanol, 2 octanone or air (blank group); conditioning session: olfactory conditioning of the proboscis extension reflex (Bitterman et al., 
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these two odors do normally not elicit any response before conditioning. (B) Performance during conditioning showing percentage of animals extending the pro 
boscis to the mixture during the three training trials. Results indicate % of response during the odor period and before reward. All groups were trained identi 
cally; they differed only in regard to treatment during the exposure session before training. No difference was found between the three groups but significant 
effects were found between trials for all groups. (C) Each of the three groups was split into two groups for testing with the pure components (I hexanol or 2 oc 
tanone). Two way ANOVA revealed a significant interaction between exposed odor (I hexanol, 2 ocatanone or air) and test odor (Fz,130 3.09, P < 0.05). Num 
bers in the bars indicate number of animals in each test condition in each exposure group. (D) Same data from C reorganised by exposed odor (I hexanol and 
2 octanone as test odors when animals had been exposed to I hexanol or 2 octanone, respectively), novel odor (I hexanol and 2 octanone as test odors when 
animals had been exposed to 2 octanone or to I hexanol, respectively) and blank (I hexanol and 2 octanone as test odors after exposure to air). *P < 0.05 
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tion were determined based on the instantaneous network activity. 
They were potentiated according to the following Hebbian learning 
rule: increase the conductance associated with all synapses where 
both the presynaptic LNs and the postsynaptic PNs are active (i.e. 
spiking). This modification was applied to each qualified synapse 
incrementally for each presentation during the training phase. The 
increment to the ith selected synapse was set as 5% of the current 
conductance value at the onset of the presentation. The potentiation 
saturated at 150% of the initial conductance of the synapse. In this 
plasticity scheme, most PN activity saturates within the first 10 pre 
sentations of the training odor. Note, however, that the applied plas 
ticity progressive! y reduces the total excitation across the LN 
population, which in tum may reduce the total inhibition to the PN 
population. Therefore, the training time required for the synaptic 
connections to reach the bound and stabilise may be longer. For that 
reason we have kept the netwOik in the training phase for 20 presen 
tations, although the changes in the affected synaptic conductances 
vanished weU before the end of training presentations due to the 
imposed 150% limit. In the post training phase we fixed the synaptic 
conductances in the network and tested the network once again in 
random order with the pure odors A and X and the binary mixture. 

Figure 6C shows the projected calcium trajectories in each phase 
of the experiment and for both training odors. The thick loops corre 
spond to the presentations of odor A, X and the mixture during the 
initial phase before training. In each graph, the three thin loops in 
blue and red color correspond to the three representations of pure A 
and pure X during training and in the post training phase. The three 

thin green loops show the trajectory for the mixture at the 5th and 
15th training trial and at the post training phase in the order indi 
cated by the arrow. Notice that the initial trajectories for the mixture 
may look different and shifted from the middle of the PC space in 
both figures even though they represent the pretraining state of the 
same network. The different shapes are due to different runs on sep 
arate PCAs for visualisation of the shift provoked by treatment. 

We simulated 100 random networks generated independently 
using the connectivity shown in Fig. 6A. The average increment in 
a LN to PN synapse modified by odor exposure over all tested net 
works was relatively large (0.0373 ~tS). As in the imaging experi 
ments (Fig. 3C), the correlation between the mixture and the odor 
that was not exposed increased across trials (Fig. 6B). Exposure to 
either odor shifted the response to the mixture toward the novel (not 
exposed) odor (Fig. 6C and D). The increase in the correlation 
between the mixture and the novel odor was measured along 100 
samples placed uniformly on the respective loops. 

A successful AL network is defined as one that demonstrates a 
significant increase in such correlation, namely a 10% increase with 
respect to pretraining correlation. The correlation between two dis 
tinct netwOik responses was calculated as follows: first, for each 
PN, the single channel time series for the two stimuli were recorded 
during the exposure period. Then, the cross correlation between such 
pairs of signals is obtained The maximum correlation value over a 
range of time Jags between the time series was extracted as a simi 
Jarity measure between the pairs of recorded signals. Finally, the 
correlations obtained for each pair of individual PN responses in this 
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encapsulated in the odor presentation labeled by TR. 



way were added up and interpreted as the correlation between the
two multidimensional PN responses. Out of 100 random realisations
of the model, 98 of them demonstrated such an increase after the
training phase, making them successful in reproducing the imaging
data. The magnitude of potentiation during training trials and the
saturation level regarding the synaptic conductances were tuned to
maximise this success rate.
The total inhibition originating from LN activity into the PN pop

ulation is the key quantity in this phenomenon (see Fig. 7 for an
example of exposure to odor A). The total inhibition was always lar
ger when the mixture (i.e. both odors A and X together) stimulated
the network than when only odor A or X stimulated the network.
By construction with the given parameters, the A type PNs were
initialised just above their firing thresholds. Upon training with odor
A, the total inhibition onto A type PNs was increased and most of
these units turned silent when stimulated with the mixture. On the
other hand, the bound introduced on the plasticity (i.e. 1.59 the ori
ginal conductance on the affected synapses) ensured that the total
inhibition recruited by stimulus A after training was not enough to
suppress responses in A type PNs when stimulated with odor A
alone.
We also used a rate model to investigate whether plasticity at spe

cific synapses would be more effective in generating the changes we
observed. In addition to the LN to PN plasticity, we tested PN to
LN and LN to LN synaptic changes. Out of the 1000 train test epi
sodes performed on the sample networks for the rules LN to PN,
PN to LN and LN to LN, 98.6, 76.3, and 32.4%, respectively, of
the trials were successful. Based on these results, we included
LN to PN and PN to LN synapses for further analysis with the con
ductance based model and ruled out LN to LN. In order to test this
prediction derived from the rate model we applied synaptic plasticity
from the PN to LN in the conductance based model, running 100
random realisations. We observed that 78 instances out of 100 ran
dom realisations were successful, and this is consistent with the suc
cess rates observed in the rate models. The LN to LN model was
significantly less successful than LN to PN and PN to LN, to a
probability value of P < 0.001 with a power of 99.99%.
We also reproduced the phenomenon by using other hypothetical

connections from the ORN into the AL. In particular, we tested the
possibility that the LNs do not receive direct input from the ORNs
such that they only get activated by the PNs (data not shown). The
results also showed that the most effective connections to modulate
information filtering were the LN to PN connections, which is con
sistent with the results previously described. It is remarkable that,
regardless of the network design and stimulus input into the AL, the
most effective connections for modulating the information filtering
are LN to PN.

Discussion

Our analyses are consistent with a model in which plasticity in the
AL sets up a filter for processing odors (Smith, 1996; Smith et al.,
2006). It is now clear that associative and nonassociative mecha
nisms of plasticity are essential components of that filter (Faber
et al., 1999; Stopfer & Laurent, 1999; Sandoz et al., 2003; Yu
et al., 2004; Sachse et al., 2007; Denker et al., 2010; Das et al.,
2011; Rath et al., 2011). A major question that remains regards how
these mechanisms interact to reshape the way the networks process
sensory information. In the AL of the moth Manduca sexta (Daly
et al., 2004), different types of pairing of odor with sucrose rein
forcement restructured the responses to odor in the AL network.
Simply pairing odor with sucrose increased excitatory responses in

the AL, and presentation of odor alone decreased responses. Differ
ential conditioning of one odor paired with sucrose and the other
presented alone produced more complex switches between excitation
and inhibition. Although it was clear from this work that both non
associative and associative plasticity influence the AL network, the
function of this plasticity in terms of coding remained elusive. More
recently, similar response changes in PNs of the AL after differential
conditioning were reported for the honey bee (Fernandez et al.,
2009). This study went on to show that the changes served to
increase the separation between the spatiotemporal response patterns
for a reinforced vs. unreinforced odor, presumably making the odors
perceptually more distinct (Sandoz et al., 2003).
Here we have used calcium imaging to reveal that nonassociative

mechanisms related to latent inhibition contribute to this separation
by changing the competitive interactions between two different spa
tiotemporal activity patterns. The result is that a novel odor is more
clearly represented in a binary mixture when it is combined with a
previously unreinforced odor. We also show that these changes in
the AL correlate to changes in perceptual properties of the mixture
in behavioral experiments. The pair of odors used in the present
work was selected because the odors have similar salience when
separately used as a conditioned odor (Guerrieri et al., 2005; Fer
nandez et al., 2009), and neither perceptually dominates the other in
behavioral or imaging experiments. As a 1 : 1 mixture produces a
relatively graded change from either component, we felt that this
condition was the best one with which to begin to look for plastic
ity induced changes. Latent inhibition and overshadowing have been
shown using several different odors (Smith, 1998; Chandra et al.,
2010), which indicates that our results will broadly apply to many
odor pairs. Furthermore, our mathematical modeling also predicts
that different degrees of overlap among the components should not
affect the present conclusion. Nevertheless, the AL may have built
in or learned asymmetries in the way it processes different odors.
Therefore, extension of our behavioral and imaging analyses to com
pare pairs of odors that have differing degrees of overlap or activa
tion of glomeruli will be important.
The change in correlation among the pure odors and the mixture

was very consistent across animals. The representation of the mix
ture became more similar to the novel odor and less similar to the
exposed odor. Moreover, we showed that measuring only a fraction
of the glomeruli in the AL, i.e. 18 out of 165, was sufficient to
detect changes that correlated with the changes in the behavior. This
perhaps surprising result might have two possible explanations.
First, the glomeruli that are particularly relevant for this type of
learning for these odors could have happened to be among the 18
glomeruli we targeted. That explanation seems less likely because
we have not been able to identify single glomeruli that showed a
statistically significant change after training, which is consistent with
our previous report about plasticity in the AL (Fernandez et al.,
2009) as well as with related studies (Peele et al., 2006; Rath et al.,
2011; but see Sandoz et al., 2003; Yu et al., 2004). Alternatively,
and perhaps more likely, the plasticity driven by odor exposure may
be small and distributed across many glomeruli. In Fernandez et al.
(2009) and here we have shown that the change in the network is
not dominated by one or two glomeruli. Instead, plasticity is
reflected in the summation of small changes across many glomeruli.
This interpretation seems consistent with the small but significant
change reported after analyzing only 18 of the 165 glomeruli that
conform the AL. If more glomeruli could be imaged the changes
might be more obvious than the ones we report here. Furthermore,
it is possible that plasticity affects different glomeruli in different
animals such that the changes vanish when glomerular activity is
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averaged across bees. Variability across animals might be expected 
given that we used forager bees for the experiments, and each ani 
mal could have had its olfactory network shaped by different experi 
ences in the field. 

The changes we observed might be related to mechanisms of non 
associative plasticity already described in the AL. Protein kinase A 
is important for nonassociative plaslicity in the AL (Muller & Hilde 

brandt, 2002), and this could be an important mechanism underlying 
the plasticity at the circuit level that we describe. Also, unreinforced 
exposure to an odor can increase synchronisation among PNs (Stop 
fer & Laurent, 1999) or induce odor specific changes in spontaneous 
background activity (Galan et al., 2006). However, the latter effects 
last only a few minutes. In contrast, we show that exposure alters 
competitive interactions with other odors that lasts up to 70 min 



and, behaviorally, latent inhibition lasts at least 24 h (Chandra et al.,
2010). More detailed analyses will be needed to reveal whether
these forms of nonassociative modification of the AL are related,
and will require a more detailed understanding of the neural mecha
nisms that underlie them.
As a first step toward investigating the possible underlying neural

mechanisms, we have chosen to implement nonassociative plasticity
in a well developed model of the insect AL (Bazhenov et al., 2001).
Our modeling efforts performed both with realistic conductance
models and with mean firing rate models replicated the experimental
findings. We found that the most effective manner to filter out a
repetitive unreinforced stimulus is by applying a Hebbian type of
plasticity from the LNs onto the PNs. Even though other synaptic
changes were also valid to some extent, the LN to PN connectivity
changes were the most consistent in implementing filtering of fre
quent repetitive information. This result corresponds to a recent
report of nonassociative modification of the fruit fly AL response to
carbon dioxide, which occurs at least in part because of modification
of LN to PN synapses (Sachse et al., 2007). Moreover, odor specific
habituation in the fruit fly AL was recently mapped to these same
synapses (Das et al., 2011). Thus our model, which was inspired by
behavioral and imaging studies we reported here in the honey bee,
has been validated by empirical studies in the fruit fly that identified
the same type of synapse.
Furthermore, our model has gone beyond earlier studies to suggest

why plasticity specifically at these synapses is the most effective way
to modify the circuit. The reason that LN to PN synapses are more
effective is that there is a more direct and specific connection to the
PN. When a PN and LN are coactivated only that synapse becomes
modified (Fig. 7A C). Modification of a PN to LN synapse would
more often equally inhibit several PNs, including ones that are not
involved in the response to odor. For example, modification of the
red PN to LN connection in Fig. 7A would equally change the inhi
bition to the blue and red PNs. Therefore, plasticity from the PN into
LNs was relatively less effective because this pathway represents sec
ond order synapses onto the PN population. The second order nature
of the connections makes it more challenging to engineer the filtering
mechanism by means of local or Hebbian type learning rules,
although the filtering effect may arise for some favorable asymmetric
initial set of network connections.
It is conceivable that the same result, in terms of both the AL

activity and the behavioral conditioning, would arise if the response
in activated ORNs were to decrease, for example through some form
of adaptation or Hebbian decrease in the synaptic strength of the
ORN to PN connection. However, we observed no evidence of
change in PN activity after odor exposure. Furthermore, this may
not be an adequate means to accomplish filtering. This kind of mod
ification would more directly, and perhaps more significantly, dimin
ish an animal’s ability to process an odor when the meaning of that
odor changes. Using the indirect route that we propose would at
least allow the PN to be activated, which might turn out to be an
important means for reversing the plasticity when necessary. We
have not extensively tested this possible model yet, at least beyond
what we present in Figs 2 and 5.
We did not find any indication of changes in the spatiotemporal

representation of the exposed or the novel odor as a result of unrein
forced odor exposure. The correlation coefficients between the
exposed and the novel odor were the same before and after condi
tioning. Instead, the changes induced by training became evident
only in the representation of the mixture. The computational model
that we implemented was useful to define that this outcome is possi
ble under certain levels of inhibition and specific plasticity rules.

The increased level of inhibition at LN to PN synapses after unre
warded exposure, together with the higher amount of inhibition
recruited by the mixture, were sufficient to inhibit PNs of the
exposed odor. Alternatively, the total amount of inhibition recruited
by the exposed odor alone was insufficient to inhibit the PNs acti
vated by the exposed odor. Therefore the exposed odor could still
be processed when presented alone.
The filtering effect is very relevant in the context of information

processing in the brain. Stimuli that occur frequently and without
direct consequences have much less information than rare ones, and
this may or may not have consequences (Shannon, 1948). We argue
that the AL facilitates odor discrimination by reducing information
that is not relevant via a Hebbian plasticity rule from the LNs to the
PNs, which operates without reinforcement. It helps to reduce the
importance of information that occurs too frequently and which does
not have any associated positive or negative gain with it. Future
studies will have to address how associative and nonassociative
plasticity mechanisms interact to prevent repeated but reinforced
stimuli to be less represented in a mixture.
Our work, as well as other studies of plasticity in early sensory

processing (Faber et al., 1999; Daly & Smith, 2000; Sandoz et al.,
2003; Yu et al., 2004; Sachse et al., 2007; Das et al., 2011), raises
two important questions that now need to be addressed. First, what
modulatory pathway, if any, is involved in modulation of synapses
to accomplish the nonassociative plasticity we have described? The
computational model that we used did not implement a modulatory
pathway. However, there are several possibilities for modulatory cir
cuits. The biogenic amines octopamine and dopamine have been
implicated in associative conditioning of appetitive (sucrose) and
aversive (electroshock) stimuli in the honey bee and fruit fly brains
(Hammer, 1997; Farooqui et al., 2003; Schwaerzel et al., 2003;
Vergoz et al., 2007). It may therefore be that these or other biogenic
amines are involved in nonassociative conditioning. Furthermore,
NMDA receptors have been identified in the honey bee brain (Zan
nat et al., 2006) and have been shown to be involved in plasticity
that underlies odor specific habituation in the Drosophila AL (Das
et al., 2011). Nitric oxide is also present in insect ALs and may be
involved in synaptic plasticity (Muller & Hildebrandt, 2002).
The second important question regards how other areas of the

brain interact with or even help drive plasticity in the AL. We have
shown that the representation of the exposed odor does not change
as a result of odor exposure, yet our earlier behavioral studies have
shown that the behavior toward the exposed odor changes (Chandra
et al., 2010). Therefore, plasticity in the AL alone cannot com
pletely account for latent inhibition. For this reason we propose that
the AL only provides an initial filtering, or preprocessing, of the sig
nal that in some as yet unspecified way helps downstream process
ing. But this raises the question of the relationship between
plasticity in the AL and plasticity in other areas of the brain, and
whether what we have measured even originates in the AL. Several
lines of argument support the conclusion that the plasticity we have
identified could reside in the AL itself. Studies in the fruit fly
(Sachse et al., 2007; Das et al., 2011) have shown that some com
ponents of the plasticity reside at LN to PN synapses in the AL.
Furthermore, activation of different signaling pathways in the AL is
crucial for different forms of olfactory memory (Grünbaum & Mül
ler, 1998; Müller, 2000; Muller & Hildebrandt, 2002; Ashraf et al.,
2006; Thum et al., 2007), and structural plasticity in the AL as a
consequence of olfactory experience has been shown in Winnington
et al., 1996; Sigg et al., 1997; Devaud et al., 2001; Sachse et al.,
2007; Hourcade et al., 2009 and Das et al., 2011. Finally, our
model suggests that the kind of nonassociative learning that we are
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studying here can be achieved by the sole participation of the intrin
sic elements of the AL network (i.e. ORNs, LNs and PNs) com
bined with Hebbian plasticity.
However, we cannot rule out that the changes underlying plastic

ity in the AL could be influenced by feedback from other brain
areas. Feedback neurons from the mushroom bodies to the ALs have
been reported in the fruit fly (Hu et al., 2010) and honey bee (Ry
bak & Menzel, 1993 Kirschner et al., 2006). Any feedback from the
mushroom bodies to the AL that would account for the plasticity we
have identified would need to be selective to provide modulation of
odor specific PNs. The current anatomical description of the feed
back pathway in the honey bee involves a single, or at most a few,
neurons that make broad connections across glomeruli in the AL.
Therefore, any modulation would seem to be broad based and lack
the needed specificity to account for our data. Nevertheless, future
studies should be focused on describing the specific origin and tar
get of feedback neurons, and it will be important to establish
whether the changes we observe in the AL are necessary and/or suf
ficient for producing the behavioral effect reported here. Indeed,
changes in the visual context affect behavioral expression of latent
inhibition (Chandra et al., 2010). It would be interesting to establish
whether alteration of the visual context changes expression of latent
inhibition in the AL, which would most likely occur via feedback.
In summary, we now know that there are subtle changes in the

AL activity due to unsupervised learning that filters the most com
mon information. Combining modeling with empirical work has
benefitted our study by providing specific explanations for why the
changes occur, from both a mechanistic and a theoretical basis. It
has provided us with several new testable hypotheses for future
work. The answer to these questions will no doubt require further
combined empirical and computation modeling studies.
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