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Nonlocal thermoelectricity in a Cooper-pair splitter
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We investigate the nonlocal thermoelectric transport in a Cooper-pair splitter based on a double-quantum-dot-
superconductor three-terminal hybrid structure. We find that the nonlocal coupling between the superconductor
and the quantum dots gives rise to nonlocal thermoelectric effects which originate from the nonlocal particle-hole
breaking of the system. We show that Cooper-pair splitting induces the generation of a thermocurrent in the
superconducting lead without any transfer of charge between the two normal-metal leads. Conversely, we show
that a nonlocal heat exchange between the normal leads is mediated by nonlocal Andreev reflection. We discuss
the influence of finite Coulomb interaction and study under which conditions nonlocal power generation becomes
possible, and when the Cooper-pair splitter can be employed as a cooling device.
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I. INTRODUCTION

Hybrid superconductor devices [1–16] are promising can-
didates for entanglement generation in solid-state systems
and, therefore, have potential applications for superconduct-
ing spintronics [17], quantum information, and quantum com-
putation [18,19]. The central idea is that the electrons in an
s-wave superconductor are in a spin-entangled state which
can be made electronically accessible by splitting them via
cross-Andreev reflection (CAR) into spatially separated nor-
mal leads. The competing process of local Andreev reflection
(LAR), where the electrons tunnel into the same lead, does not
directly contribute to the spatially nonlocal entanglement. In
order to increase the CAR fraction of the current and minimize
the effect of LAR, different strategies have been adopted
such as employing ferromagnetic leads [20–24] or including
quantum dots with large intradot Coulomb repulsion [25–32].
In double quantum dots with finite Coulomb repulsion, the
possibility has been discussed of inducing spatially nonlocal
entanglement and manipulating its symmetry by involving
only the LAR process even without the nonlocal coupling
[33,34].

The study of energy harvesting has also drawn much atten-
tion over the last few years [35–39]. Among the suggested im-
plementations using superconductors are S-N junctions [40],
ferromagnet hybrid systems [41–46], and hybrid quantum-dot
systems [47–50]. Aspects such as thermodynamic efficien-
cies [51–59] and thermoelectric effects in strongly correlated
quantum dots [60,61] have been addressed. In particular, Ma-
chon et al. suggested in Ref. [41] that nonlocal thermoelectric
effects in Cooper-pair splitters should exist. Furthermore, Cao
et al. showed in Ref. [62] that Cooper-pair splitting can be
achieved in the absence of bias voltages by applying a thermal
gradient to the normal leads. Inspired by this idea, we present
in this work a detailed study of the nonlocal thermoelectric

properties of a Cooper-pair splitter taking fully into account
the Coulomb interaction. Further, we discuss the possibility of
nonlocal cooling and power generation. Intriguingly, we show
that the system still becomes a thermoelectric device due to
the influence of the superconducting lead, which by itself is
not thermoelectrically active being intrinsically particle-hole
symmetric. This is essentially due to the fact that the nonlocal
particle-hole symmetry is broken as a consequence of the
thermal gradient and the three-terminal device geometry.

This work is organized as follows. In Sec. II, we intro-
duce our model and the formalism employed to calculate
the thermoelectric properties. We explore the thermoelectric
properties in the linear regime in Sec. III, and compare the
results to simplified effective models. Section IV is devoted to
the study of nonlocal power generation and cooling. Finally,
we draw our conclusions in Sec. V.

II. MODEL AND MASTER EQUATION

In this section we introduce the model of the Cooper-pair
splitter, sketched in Fig. 1, and the formalism employed to cal-
culate its thermoelectric properties. The Cooper-pair splitter is
composed of two quantum dots coupled to an s-wave super-
conductor and two normal-metal leads; see Ref. [33]. For a
large superconducting gap, |�| → ∞, the subgap physics is
described by the effective Hamiltonian [33,63–69]

HS = HDQD −
∑

α=L,R

�Sα

2
(d†

α↑d†
α↓ + H.c.)

−�S

2
(d†

R↑d†
L↓ − d†

R↓d†
L↑ + H.c.), (1)

where HDQD describes the double-quantum-dot (DQD) sys-
tem; the second term characterizes the local Cooper-pair
tunneling between the superconductor and dot α = L, R with
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FIG. 1. Cooper-pair splitter circuit consisting of a double quan-
tum dot coupled to two normal leads (N) and a superconducting one
(S). A temperature gradient δT between the normal leads induces a
nonlocal current into the superconductor which may generate power
for finite chemical potentials.

tunneling rates �Sα . Here, d†
ασ denotes the fermionic creation

operator for an electron on dot α with spin σ =↑,↓. The
last term describes the nonlocal tunneling of a Cooper-pair
splitting into both dots with the rate �S ∼ √

�SL�SRe−l/ξ . The
nonlocal coupling �S becomes large when the distance l be-
tween both quantum dots is small compared to the coherence
length ξ of the superconductor. The DQD is modeled by

HDQD =
∑
α,σ

εαnασ +
∑

α

Uαnα↑nα↓ + U
∑
σ,σ ′

nLσ nRσ ′ (2)

with εα the orbital energies and Uα (U ) the intradot (interdot)
Coulomb interaction; nασ = d†

ασ dασ is the occupation opera-
tor. We note that in the limit |�| → ∞, the system Hamilto-
nian is exact in the superconducting coupling �S [64]. This
model assumes large single-level spacings in the quantum
dots. Hence, a maximum of two electrons with opposite spin
can occupy each dot, and in total at most four electrons can
reside in the DQD. In the following, we mainly focus on
the nonlocal resonance which is not substantially affected
by the Coulomb interaction when U 	 Uα . In this regime
the nonlocal resonance occurs for gate voltages εα ≈ −U/2,
as discussed in Ref. [33]. Hereafter, in general we consider
the case of U = 0, but the generalization to finite interdot
Coulomb interaction U �= 0, however, is straightforward.

Master equation and transport coefficients

For the computation of particle and heat currents,
we restrict ourselves to the sequential tunneling regime,
�NL, �NR 	 kBTα , with Tα being the temperature of the nor-
mal lead α. Moreover, we consider the case of weak coupling
to the normal leads, �Nα 	 �S , and thus can express the
populations Pa of the eigenstates |a〉 of the system (HS|a〉 =
Ea|a〉) by a Pauli-type master equation of the form [33]
Ṗa = ∑

a′ (wa←a′Pa′ − wa′←aPa) with the stationary solution
denoted as Pstat

a . With increasing �Nα , one may have to
consider off-diagonal density matrix elements [70,71] or work
in a local basis [72,73]. The transition rates for tunneling of an
electron from the normal lead α to the respective dot (s = +1)
and the opposite processes (s = −1) are simply given by

Fermi’s golden rule

w
(α,s)
a←a′ =

∑
σ

�Nα f (−s)
α (−sωaa′ )

∣∣〈a∣∣d (−s)
ασ

∣∣a′〉∣∣2
, (3)

with the notation d (−s)
ασ for the electron creation and annihila-

tion operators, ωaa′ = Ea − Ea′ , and f (s)
α (ε) = {1 + exp[s(ε −

μα )/kBTα]}−1 for the Fermi function at the chemical potential
μα . Hereafter, we fix the chemical potential of the super-
conductor to be zero, μSC = 0, using it as reference for the
chemical potentials of the normal leads, μα . Hence, the total
rates entering the master equation are given by

wa←a′ =
∑

α,s=±
w

(α,s)
a←a′ . (4)

The electron and heat currents through the contacts corre-
spond to the rates of changes of the particle number and the
energy in the corresponding lead, Iα ≡ e0〈Ṅα〉 and Q̇α , respec-
tively. In the sequential-tunneling regime with the normal-
metal leads it is easy to write the currents in terms of the
stationary populations of the DQD Pstat

a′ and the rates w
(α,s)
a←a′ :

Iα = e0

h̄

∑
a,a′,s=±

sw(α,s)
a←a′Pstat

a′ , (5)

Q̇α = −1

h̄

∑
a,a′,s=±

(Ea − Ea′ )w(α,s)
a←a′Pstat

a′ − μα

e0
Iα. (6)

The last term in Eq. (6) reflects the fact that, in order to
obtain the heat current, one needs to subtract the net energy
associated with the flux of particles at the fixed electrochemi-
cal potential μα . For the superconducting leads, the electric
current is determined by current conservation, that is, IS =
−IL − IR. In the large-gap limit, due to perfect Andreev heat
mirroring, the heat transferred to the superconductor vanishes,
i.e., Q̇S = 0. This means that the heat current in the system
flows only between the normal leads.

In thermoelectrical systems, it is instructive to discuss the
linear regime at small voltages and small thermal biases.
Thus, the linear response of the electric currents and the heat
currents of our three-terminal system can be described by six
equations, which reduce to four equations, when taking into
account particle and energy conservation [55,58,74]. Since
for a large superconducting gap heat can be exchanged only
between the normal leads but no electric current can flow
between them at the nonlocal resonance at equal chemical
potentials, we will restrict ourself to the following relations:

δIS = LS
11δV + LS

12δT, (7)

δQ̇R = LR
21δV + LR

22δT, (8)

with four transport coefficients LS/R
i j , δV = (μL + μR)/2e0,

and δT = TL − TR [75]. Here, −δV/δT |Iα=0 = LS
12/LS

11 de-
fines the nonlocal Seebeck coefficient, which, multiplied by
the temperature difference δT , yields the nonlocal Seebeck
potential, and δQ̇R/δT |μα=0 = LR

22 is the closed circuit ther-
mal conductance of the right normal lead. For a multiter-
minal generalization, see Refs. [55,58]. Beyond the linear
regime, Onsager coefficients of higher order [76,77] LS

kk′ , LR
kk′

can be calculated by recursive methods [78]. The master-
equation formalism presented so far can be easily gener-
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alized to compute higher-order current cumulants by using
standard full-counting-statistics techniques and introducing
appropriate counting variables both for the charge and energy
currents [78–84]. Hereafter, we only consider the average
currents since these are the quantities that are easily accessible
experimentally.

III. NONLOCAL THERMOELECTRICITY

Hereafter, we will discuss the nonlocal thermoelectrical
behavior of the Cooper-pair splitter for intradot Coulomb
energies UR and UL much larger than any other energy scale,
such that double occupancy of each individual dot is energeti-
cally forbidden. This simplifies the system making the physics
more transparent [85]. In order to investigate thermoelectrical
effects, we assume that the normal leads are at different tem-
peratures, TL > TR. We focus on the following nonlocal ther-
moelectrical effect: A thermal gradient between the normal
leads induces a charge current between the superconductor
and the normal leads, see Fig. 1, even if the chemical poten-
tials of the three leads are kept equal, μSC = μR = μL = 0.
In the limit UR,UL � εR, εL ≈ 0, the current through the su-
perconducting lead IS is purely induced by nonlocal Cooper-
pair splitting, IS < 0, and recombination, IS > 0, respectively.
In the former (latter) process Cooper pairs, consisting of
electron singlets, split into (recombine from) different dots.
Since only nonlocal Andreev reflection is present, the average
currents through the two normal leads are identical, IR =
IL = −IS/2, irrespectively of the lead temperatures and tunnel
couplings.

Furthermore, since we consider the situation of a large
superconducting gap, |�| → ∞, no quasiparticle excitation
can take place and heat transfer within the superconducting
lead is forbidden. Thus, heat transfer can only occur between
the two normal leads mediated by the superconducting lead,
which operates as a perfect nonlocal Andreev mirror.

In Fig. 2(a), we show a density plot of the supercon-
ducting current IS as a function of the level energies εR and
εL for temperatures much smaller than the nonlocal cou-
pling, kBTα 	 �S . We recognize immediately that the current
is finite for εR �= εL. The current is nonvanishing close to
the dashed lines corresponding to the resonance conditions
2�E± = εL − εR ±

√
(εL + εR)2 + 2�2

S = 0.
The addition energies, �E±, correspond to processes of

electron exchange at the normal leads for the model Hamil-
tonian

Heff=
∑
ασ

εα

(
|ασ 〉〈ασ | + |S〉〈S|

2

)
− �S√

2
(|0〉〈S| + |S〉〈0|)

(9)

following from Eq. (1) when restricting it to the subspace in-
volving the empty state |0〉, the singly occupied states |ασ 〉 =
d†

ασ |0〉 of dot α = L, R with spin σ = ↑,↓, and the singlet
state |S〉 = 1√

2
(d†

R↑d†
L↓ − d†

R↓d†
L↑)|0〉. In the Hamiltonian we

have omitted the triplet states as they cannot be directly cou-
pled to the superconductor, where only singlet Cooper pairs
are present. The triplet states play an important role in the
high-bias regime, yielding a suppression of the current called
triplet blockade [65]. They are also crucial in the presence of

interdot tunneling in combination with spin-orbit interaction
[33,34].

In Fig. 2(b), we consider the heat flow from the hot to the
cold normal lead. Essentially, nonvanishing heat flow occurs
where the thermoelectric behavior is present, indicating that
the mechanism of thermoelectricity in the system is also
responsible for the heat exchange. Intriguingly, here the heat
exchange is mediated only by Cooper pairs, since there is no
other way for an excitation to be transferred from a normal
lead to another normal lead without a process involving a
Cooper-pair emission or absorption at the superconducting
interface. As expected, Cooper pairs cannot transfer heat
to/from the superconductor, being at zero energy (ground
state), but they can coherently mediate heat exchange between
the normal leads. We refer to this mechanism as nonlocal
heat exchange coherently mediated by the superconducting
lead. This interpretation is supported by the fact that the
heat exchanged is enhanced just inside the gap between the
two resonances; see Fig. 2(b). Indeed, inside the gap for εR,

εL ≈ 0 the heat current remains finite. This is a consequence
of the fact that the contributions of the two nearby resonances
have opposite particle/hole character and add up. Conversely,
the thermoelectrical current is suppressed in the gap since
particles and holes have opposite charges and, consequently,
yield opposite contributions to the thermoelectrical current. It
is important to stress that this heat transfer mediated by the
superconductor does not affect the superconducting state and
can be interpreted as a nonlocal version of the Andreev mirror
phenomena for the heat current.

In panels (c) and (d) of Fig. 2, we consider the linear
regime in the temperature, δT 	 T = (TL + TR)/2. In this
case, the linear transport coefficients depend only on the aver-
age temperature T of the leads. We now discuss how the linear
coefficients L12 and L22 vary with the detuning �ε ≡ εR − εL

along the line εL = −εR when changing the temperature but
keeping fixed the nonlocal coupling �S , which determines the
distance between the two resonances.

In Fig. 2(c) the two central (inner) peaks progressively
cancel each other as the temperature increases. This is a
consequence of the fact that when �S � kBT , the electron-
like contribution of a resonance coexists with the hole-like
contribution of the other resonance. This competition reduces
the total thermoelectric current. Once kBT = �S the two res-
onances merge and behave as a single resonance. Panel (d)
shows the corresponding linearized heat current coefficient
LR

22. For well-separated peaks, �S � kBT , the heat current
essentially vanishes at the resonances, where also the current
coefficient vanishes. In the situation when the peaks are in
proximity, �S � kBT , they add up constructively at �ε ≈ 0.
When kBT = �S again the thermal behavior resembles the
contribution of a single QD resonance.

Let us develop a physical picture to explain the behavior
of the linear thermoelectric coefficients in the limit of large
intradot Coulomb interaction, for equal chemical potentials,
μ ≡ μL = μR, and in the presence of a temperature gradient
between the two normal leads, TL > TR. Figure 3(a) depicts
the level structure of the double-quantum-dot system in the
situation where the chemical potentials of the normal leads
coincide with the one of the superconductor. For εL, εR ≈ 0
the singlet state mixes with the empty state forming nonlocal

075429-3



ROBERT HUSSEIN et al. PHYSICAL REVIEW B 99, 075429 (2019)

(a)

(b)

(c)

(d)

−0.10

−0.06

−0.02

0.02

0.06

0.10

−0.1

0.0

0.0

0.1

0.1

0.2

0.2

0.6

1.0

−4 −2
−2

−2

−2

−1

−1

−1

0

0

0

0

1

1

1

2

2

2

2

4

T
L

S 1
2
/e

0
Γ

N
α

L
R 2
2
/k

B
Γ

N
α

IS/e0ΓNα

Q̇R/Γ2
Nα

L
/Γ

S
L
/Γ

S

R/ΓS Δ ΓS

kBT=ΓS/25
kBT=ΓS/10

kBT=ΓS

FIG. 2. (a) Superconducting current IS = −IL − IR and (b) heat current Q̇R through the right normal lead as a function of the level
energies εL and εR. Parameters are kBTL = 15�Nα , kBTR = 5�Nα , �S = 100�Nα , U = μα = 0, �Sα = �S , and Uα � �S . The dashed lines
indicate where the Andreev bound state addition energies [(εL − εR ) ± √

2�2
S + (εL + εR )2]/2 are resonant with the Fermi levels at μ = 0. (c),

(d) Linear current coefficient LS
12 and heat current coefficient LR

22 in the limit δT ≡ TL − TR → 0 as a function of the detuning �ε ≡ εR − εL

for different average temperatures T . Here, the energy levels are symmetrically detuned, i.e., εR = −εL . The vertical line indicates one of the
Andreev bound state addition energies.

Andreev bound states shared between the two dots due to
nonlocal Cooper-pair tunneling with the central superconduct-
ing lead [86]. The electron tunneling with the normal leads
determines transition between the DQD states. The dotted
lines indicate the Andreev bound state addition energies �E±,
while the solid lines indicate the orbital energy levels of the
quantum dots.

For the case under consideration (TL > TR), when more
electrons are above the Fermi level of the left normal lead
than holes below the Fermi level of the right normal lead,
electrons tunnel via the Andreev bound-state channel into
the superconductor and form Cooper pairs. At the same time
Cooper pairs can split in an opposite process and tunnel into
the normal leads. The difference of both processes yields a
net thermoelectrical current when the normal leads have dif-
ferent temperatures. This effect is a direct consequence of the
nonlocal particle-hole asymmetry induced by the structure.

A. Linear regime and effective models

In Fig. 4, we show in solid lines the dependence of the
linear coefficients on the nonlocal coupling �S keeping fixed
the temperature T . This behavior can be roughly interpreted
by mapping the Cooper-pair splitter in the CAR regime to a

simplified model of a single quantum dot with two resonances
located at the addition energies of the Andreev bound states;
see the inset of Fig. 4. We observe that the thermoelectric
behavior of this simple model resembles the thermoelectric
behavior of the full one. Its main aim is to show that the
linear behavior of the full system is not too different from
the conventional thermoelectrical properties of a quantum dot
system, even though the former is mainly characterized by the
discussed nonlocality in the heat and charge transport which
cannot be present in a simple quantum dot. The thermoelec-
trical coefficients for the simplified model can be expressed in
the Landauer-Büttiker formalism as [87–91]

Leff
k+1,2 ≡ (2e0)1−k

h

∫ ∞

−∞
dE

Ek+1τ (E )

4kBT 2 cosh2(E/2kBT )
. (10)

The additional factor 2 for the electron current (k = 0) takes
into account that in an Andreev process the current is doubled
(IS = −2IR). The transmission function is modeled by two
Lorentzians located at the Andreev bound state energies

τ (E ) ∝
∑
s=±

γ

(E − �Es)2 + (γ /2)2
. (11)
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μL, TL μR, TR

Q̇R, cooling

Cooper-pair
flux

(a)

(b)

FIG. 3. (a) Cooper-pair splitter configuration for zero chemical
potentials, μL = μR = 0, leading to a heating of the right normal
lead (red arrow) and a net flux of Cooper pairs from the super-
conductor into the normal leads (black arrow). (b) Configuration
for finite chemical potentials, μL = μR > 0. A net flux of Cooper
pairs flows into the superconductor (black arrow) against the in-
trinsic thermocurrent leading to a cooling of the right normal lead
(blue arrow).

Finally we arrive at Leff
k+1,2 = α

h̄ (2e0)1−k
∑

s=± Ak (�Es) with
α an overall scaling factor and for k = 0,±1 the function

Ak (�) =
∑
s=±

ωk+1
s (�)

kB(2πT )2
� ′

(
1

2
− siωs(�)

2πkBT

)
+ γ δk,1

2πT
, (12)

which collects the contributions from the poles of the
Fermi function and the poles ωs(�) = � + siγ /2 of the
Lorentzians. Here, � denotes the digamma function.

The reader should be aware that in the quantum-dot model
the thermoelectrical current and the thermal current always
flow between the two normal leads. In the full system, in-
stead, due to the presence of the superconducting lead with a
nonlocal coupling, the charge and the thermal current flow in
different terminals enabling, thus, nonlocal thermoelectricity
[74].

In Fig. 4, we compare the linear thermoelectric coefficient
[panel (a)] and the thermal conductance [panel (b)] of this
simplified model (dashed lines) with the results of the full
calculation (solid lines) for different nonlocal couplings �S as
a function of the detuning. Here, we fix the free parameter
α of the mapped quantum-dot model such that the linear
current coefficient at �S = kBT fits the one of the full model.
The mapped quantum-dot model qualitatively captures the
curve progression of the full computation. When the nonlocal
coupling is much larger than the temperature (blue lines) the
behavior exhibits two well-separated resonances. At �S =
4kBT (green lines), the heat transport around zero detuning
is enhanced and this can be understood by the additive super-
position of the contributions of both Lorentzians. For lower
values of the nonlocal coupling (red lines) the two resonances
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FIG. 4. (a) Linear current and (b) heat current coefficients LS
12

and LR
22 as a function of the detuning �ε with the average temperature

T = 5�Nα/kB and all other parameters as in Fig. 2(a). The solid
lines depict the transport coefficients obtained from the full master
equation, the circles correspond to the reduced master equation,
Eqs. (13) and (14), and the dashed lines correspond to the mapped
model, see Eq. (10). The latter transport coefficients are scaled by a
factor of α = 0.37, such that the effective linear current coefficient
agrees with the one of the full model for �S = kBT . The inset
sketches this mapped model of a single quantum dot with its on-site
energies at the addition energies �E± of the Cooper-pair splitter in
the CAR regime.

effectively merge and the behavior resembles that of a single
resonance with a minimum in the thermal conductance at zero
detuning. The investigation (not shown) of the heat transport
at the resonance �ε = 0 demonstrates that the maximum is
obtained for �S = 4kBT , so this quantity can be used as an
indirect way to measure the strength of the nonlocal coupling.

A few comments on the origin of the deviation between the
full result (solid lines) and the simplified model (dashed lines)
are in order. In the simplified model, the peaks around the
resonances of the thermoelectrical coefficient, see Fig. 4(a),
are symmetric; this is not the case for the full results. The rea-
son for the asymmetry is that the two resonances correspond
to different Andreev levels which implies different energy-
dependent weighting factors in front of the Lorentzians [92].
Similarly, for the thermal conductance, Fig. 4(b), the simpli-
fied model underestimates the height of the central peak. This
can be again attributed to the fact that the central peak comes
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from the combined action of the two Andreev resonances and
not from independent resonances as naively postulated in the
simplified model. The differences between the two models are
a specific signature of the nature of the Andreev bound states
in the DQD system with respect to standard QD resonances.

In order to better elucidate this peculiar signature of the
proximity in our system, we need to go beyond the simple
two-resonance model. In particular, we can derive the current
and the heat current for the case of symmetric detuning, εL =
−εR, in the reduced Hilbert space that is constituted by the
empty state, the singly occupied states, and the singlet state
as discussed around Eq. (9). Under this assumptions, we find
explicit expressions for the charge and the heat current, as
reported in the Appendix. From those equations, we can easily
compute the nonlocal linear response coefficients following
the definitions given in Eq. (7) and Eq. (8). One finds the linear
response coefficients

h̄LS
12

e0kB
= −2

�N

kBT
K (�ε̃,�ε̃,−

√
2�̃S ) (13)

and

h̄LR
22

kB�N
=K

(
�ε̃2 + 5�̃2

S

2
,�ε̃2 + 2�̃2

S,−2
√

2�̃S�ε̃

)
, (14)

where �ε̃ = �ε/2kBT and �̃S = �S/2kBT are dimensionless
parameters. Both quantities can be written in terms of the
same universal function

K (x, y, z) = x + y cosh ε̃ cosh
√

2�̃S + z sinh ε̃ sinh
√

2�̃S

3(cosh ε̃ + cosh
√

2�̃S )(2 cosh ε̃ + cosh
√

2�̃S )
.

Furthermore, in the reduced model the nonlocal linear trans-
port coefficient LR

21 fulfills the standard Onsager relation
LR

21 = T LS
12. This indirectly supports that the linear regime

is associated with a sort of nonlocal reversibility condition.
In Fig. 4, we show the transport coefficients of the reduced
Hilbert space model with circles. In contrast to the mapped
single-quantum-dot model (dashed lines), they capture the
asymmetry in the peak heights of the linear current [panel
(a)], and explain better the enhanced peaks of the linear heat
current [panel (b)]. Moreover, the transport coefficients of the
reduced model coincide with the ones of the full model (solid
lines) in the case of a strong nonlocal coupling �S � kBT
(blue case) without any free parameter.

It is sometimes convenient to quantify the thermoelectricity
in term of the Seebeck potential μS . In the Appendix we
compute the general formula for this quantity in Eq. (A4)
in the reduced Hilbert space model, for symmetric detuning
εL = −εR and small temperature gradient δT . Taking the limit
of �S, |�ε| � kBT , one can further simplify the expression
for the Seebeck potential to

μS± ≈ (�ε ∓
√

2�S )
δT

4T
, (15)

where the sign in μS± is simply determined by the sign
of �ε. One can explain the above result for the Seebeck
potential again in terms of the mapped quantum-dot model
where the thermoelectric effect is determined by two different
resonances located at �E±. By definition, at the Seebeck
potential, the thermocurrent generated by a temperature gra-
dient vanishes. This is due to the fact that, at the addition

energies �E±, the electron distribution of the right normal
lead (having the tendency to push electrons into the super-
conductor) is identical to the hole distribution on the left
normal lead (having the tendency to pull electrons from the
superconductor). Indeed the nonlocal thermocurrent is the
result of these two competitive processes governed by the
nonlocal Andreev bound state levels where the quasiparticle
state on one dot is coupled with the quasihole state of the
other, i.e., nonlocal particle-hole symmetry. This implies that
the condition to calculate the Seebeck potential μS , for a
linear temperature gradient δT , is given by the two equations
fR(�E±) = 1 − fL(−�E∓), where the Fermi functions are
computed at the equilibrium temperature T = (TR + TL )/2.
The solution of these two conditions returns exactly the two
results of Eq. (15), providing a physical interpretation for the
full formula given in the Appendix.

B. Nonlocal cooling

We conclude this section with a final remark on the pos-
sibility to obtain a cooling cycle. When a thermoelectrical
device is operated near the reversibility condition, the thermo-
electrical cycle can be inverted in order to get a cooling cycle
[74]. Inspecting the level structure sketched in Fig. 3(b) one
would expect nonlocal cooling at finite chemical potential.
With cooling of a normal lead, we mean that electrons are
either added below its Fermi level or extracted above its Fermi
level. In particular, we expect that in the linear regime, by
slightly moving the chemical potential around the values μS±,
the nonlocal thermogenerator could turn into a nonlocal cooler
and our thermoelectrical engine becomes a cooling device
(Peltier cooling).

In order to verify this mechanism, we first give a closer
look to the heat current Q̇R of Eq. (A1), linearizing the chem-
ical potential μ ≡ μS + δμS around the nonlocal Seebeck
potential μS of Eq. (A4). For simplicity, we consider equal
temperatures, T = TL = TR, a condition for which nonlocal
cooling is still possible. One finds that Q̇R|δT =0 ≈ LR

21δμS/e0,
which shows clearly that the heat flux changes its sign with
the sign of δμS . So, when the chemical potential crosses the
nonlocal Seebeck potential, indeed, the system reverses the
heat flux. In the presence of a small temperature gradient
between the normal leads this heat-flux reversal corresponds
to the conversion of a thermoelectrical generator into a Peltier
cooler.

This scenario is further supported by the behavior of
the total electric power P ≡ −μIS/e0 generated around the
nonlocal Seebeck potential μS . Indeed, by linearizing in δμS

the thermopower becomes P ≈ LS
12δT δμS/e0 where δT is the

temperature difference. Coherently, one sees that the crossing
of the nonlocal Seebeck potential, δμS → −δμS , results in
a sign change of the total power and, thus, entails a change
between power generation to dissipation, as expected from
consistency with general thermodynamical arguments for the
scenario described so far.

We will discuss the general behavior of nonlocal thermo-
electricity in more depth in Sec. IV, which treats the nonlinear
regime, and address, therein, quantitatively the thermody-
namical performances of the thermopower and the cooling.
Furthermore, we will see that nonlocal cooling, indeed, sets

075429-6



NONLOCAL THERMOELECTRICITY IN A COOPER-PAIR … PHYSICAL REVIEW B 99, 075429 (2019)

)c()b()a(

0.00.00.0

0.1
0.1

0.2

0.2

0.2
0.3

0.3

0.5

1.0

−1 −0.5 0 0.5 1−20 −10−4 −2 00 2 4 10 20

L
R 2
2
/k

B
Γ

N
α

L
R 2
2
/k

B
Γ

N
α

LR
22/kBΓNα

Δ ΓS Δ BTΔ BT

k
B

T
/
Γ

S

=0
=ΓS/3
=ΓS
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FIG. 5. (a) Linear heat current coefficient LR
22 (which for δV = 0 is proportional to the heat current Q̇R) as a function of the detuning

�ε and the average temperature T for finite intradot Coulomb energy Uα = 100�Sα , �S = �Sα/3 = 4kBT , and kBT = 10�Nα . Here, the level
energies εL = ε − �ε/2 and εR = ε + �ε/2 are centered around the average value ε = �S/3. (b) Dependence on the average level energies ε

and (c) the interdot couplings Ūα ≡ Uα/�Sα .

in at μ ≈ μS± also well beyond the discussed linear regime.
However before doing so, we discuss in the following section
the effect of finite Coulomb interaction on the heat transport
properties at the nonlocal resonance.

C. Effect of finite Coulomb interaction

Thus far, we have restricted our analysis to the case of infi-
nite local Coulomb interaction in the QDs, so that the double
occupation of the individual dots is forbidden. Relaxing this
condition and considering finite values for Uα opens up the
possibility of a local exchange of Cooper pairs between the
superconductor and the system (both electrons in the Copper
pair tunnel to/from the same dot) [93]. This includes the
possibility to consider different virtual transitions involving a
nonlocal resonance. In this way, electrons can transfer energy
between the normal leads via elastic cotunneling; in the sub-
gap regime (|�| → ∞) elastic cotunneling is not mediated by
quasiparticles with energies larger then �, but rather by multi-
ple exchanges of local and nonlocal Cooper pairs triggered by
�S and �Sα . Thus, the finite intradot Coulomb interaction can
increase the heat current Q̇R, while the current IS through the
superconductor remains unaffected. In particular, an electron
with spin σ above the chemical potential of the left normal
lead may tunnel with the rate �NL into the left dot and occupy
the state |Lσ 〉. Then a Cooper pair may split nonlocally
with the coupling �S into the triply occupied state |tRσ 〉 =
d†

Rσ d†
L↑d†

L↓|0〉 followed by a local Cooper-pair recombination
with the rate �SL. Finally, the electron leaves the dot with
the rate �NR via the right normal lead, heating up the right
lead. The process can also proceed differently with the local
coupling operating before the nonlocal one. In this process
the electron is effectively transferred to the state |Rσ 〉 of
the right dot with no net current in the superconductor. This
shows again that, due to nonlocality, the resonant behavior of
the heat does not necessarily affect the charge current. The
aforementioned mechanism can be identified in the thermal
transport at finite interaction such as in Fig. 5(a), where
the thermal transport coefficient LR

22 is shown as a function
of the detuning �ε and the average temperature T . The

thermal conductance LR
22 describes how the heat current flows

between the two normal terminals for μ = 0. A remarkable
feature is the narrow resonance at �ε = 0. This resonance is
absent for infinite local Coulomb interactions and its linewidth
increases with the scaling �α/Uα , indicating its origin in the
elastic cotunneling mechanism.

In Fig. 5(c) one can appreciate that for increasing intradot
Coulomb interaction, the cotunneling peak becomes narrower,
while its height remains unaffected. For these calculations
the average quantum dot level has been chosen to be ε ≡
(εL + εR)/2 = �S/3 since for ε = 0 the resonance is less
pronounced [panel (b)].

IV. NONLOCAL THERMOELECTRIC POWER

So far, we have studied the transport coefficients for equal
chemical potentials μR = μL = μSC = 0. In this case there
is no power generation. For any circuital element, electrical
work is performed if the charge carriers gain potential energy
by flowing against an increasing chemical potential. There-
fore, while keeping the chemical potential of the superconduc-
tor at zero, for reference, we now consider the normal leads
at nonzero values of μ. The corresponding generated work
or thermopower P ≡ −μIS/e0 reflects the potential energy
that an electron gains [94]. Upon increasing μ from a finite
value, which still allows such counterflow, to even larger ones,
the flow of electrons will come at some specific value to a
standstill. Increasing μ further will change the sign of the
current. Then, the thermoelectric element becomes dissipative
and the electrons flow in the direction of the potential drop. In
the inverted regime, a cooling effect can be also found before,
at even higher voltages, where the fully dissipative regime
dominates.

Figure 6(a) shows the nonlocal thermopower as a function
of the chemical potential and the detuning. As expected, the
current becomes dissipative (negative power) for sufficiently
large absolute values of μ. Nevertheless, there exist regions,
namely the triangular ones in red, in which the Cooper-pair
splitter effectively generates positive thermopower and acts
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as a thermogenerator. Furthermore, one can appreciate in
this figure that the thermogenerator regime (red zones) is
delimited by the nonlocal Seebeck formula Eq. (A3) (dashed
purple line) derived in Appendix, which can be approximated
around the Andreev resonances by Eq. (15) (black dotted
line).

In Fig. 6(b), we show the maximum generated power Pmax

(red dashed line) and the corresponding nonlocal Seebeck
potential μmax (solid line) for which this maximum is ob-
tained. The maximum generated power is relatively small,
Pmax ≈ �2

Nα/3h̄, and decaying for large detuning.
Finally we discuss the thermoelectric efficiencies for power

generation and cooling. For the nonlocal power generation,
the efficiency reng = (P/|Q̇L|)/ηC is given by the power P > 0
generated in the system per extracted heat flow −Q̇L > 0
from the warmer normal lead [58]. It is normalized to the
Carnot efficiency of a heat engine ηC = 1 − TR/TL, which
is bounded between 0 and 1. Similarly, the cooling power
rfri = (Q̇R/P)/ηfri is defined as the heat flow Q̇R < 0 extracted
from the cold reservoir per absorbed power. We compare it
with the ideal efficiency of a refrigerator ηfri = TR/(TL − TR),
which can be larger than one. The combined efficiency

rtherm =
{

reng, P > 0,

−rfri, Q̇R < 0,
(16)

is depicted in Fig. 7 as a function of the detuning and the
chemical potential, where positive values (red) correspond to
power generation and negative values (blue) to cooling of the
right normal lead. Close to the lines where the thermoelectric
current vanishes, μ ∝ (δT/4T )�ε, see Eq. (15), the system
has a very high efficiency and represents an almost reversible
thermoelectric generator (red shaded area). However, the
power generated under this condition is rather small. There-
fore, as usual, there is a trade-off between high efficiency and
high output. In particular at the nonlocal Seebeck potential,
where the thermoelectric current and the thermopower vanish,

one generically expects that the thermoelectrical machine
becomes reversible and reaches the Carnot efficiency.

The fact that the thermal machine operates nearly at the
Carnot efficiency for some finite μ �= 0 suggests that the
system can become a cooling device. This happens, indeed,
in the blue shaded region bounded by the nonlocal Andreev
resonance at μ ∝ �ε/2, where the colder lead is further
cooled due to nonlocal Cooper-pair tunneling.

V. CONCLUSIONS

Nonlocal thermoelectric effects in a double-dot Cooper-
pair splitter have been investigated. Thermoelectricity prop-
erties are determined by the nonlocal breaking of the
particle-hole symmetry which is realized in the hybrid three-
terminal structure in the presence of a temperature gradient.
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and cooling efficiency Q̇R/P (blue) for Q̇R < 0 normalized by the
corresponding Carnot efficiencies; see Eq. (16). In order to depict
both efficiencies in the same plot, the latter is multiplied by a factor
of −1. All parameters are as in Fig. 6.
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Intriguingly, we demonstrated that the superconductor can
mediate coherent heat transfer between the normal leads. The
rich phenomenology can be easily interpreted in terms of
a simple model consisting of two resonances located at the
nonlocal Andreev bound state addition energies. However,
this model has some limitations and the full model is required
to get accurate results for the thermal transport. In particular,
the Andreev nature of the resonances is reflected in a different
energy dependence of those resonances. In comparison to
the simple model, we predict an enhancement of the heat
transferred between the normal lead at resonance for �S =
4kBT . Finally, at the nonlocal resonance for finite Coulomb
interaction an extra resonance is located in the heat transport
as a consequence of virtual transitions to triple occupied
states. When applying a load between the normal leads and
the superconducting one, the Cooper-pair splitter can perform
work and convert heat current into electric current with nearly
Carnot efficiency. The detuning can be used as control knob
to turn the nonlocal power generator to a heat pump and cool
the colder normal lead via nonlocal Cooper-pair tunneling.

Note added. Recently, we became aware of a related work
by Sánchez et al. [95] and also works by Kirsanov et al. [96]
and Pershoguba et al. [97].
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APPENDIX: CURRENT AND HEAT CURRENT FOR
STRONG NONLOCAL COUPLING

In this Appendix, we provide analytical expressions for
the current, Eq. (5), and the heat current, Eq. (6), assuming
symmetric detuning, εL = −εR, and equal couplings to the
normal leads, �N ≡ �Nα . As discussed in the main text, we
derive these quantities in the reduced Hilbert space spanned
by the empty state, the singly occupied states, and the singlet
state which is a good approximation at nonlocal resonance
and for strong intradot Coulomb interactions UR,UL → ∞.
By using the general method presented in Sec. II, we find the
expressions

IR = e0

h̄

NI

D
, IS = −2IR,

Q̇R = −1

h̄

NE

D
+ 1

e0

(�ε

2
− μ

)
IR, (A1)

with the numerator

NI = �N

(∑
p,q

gp,q
p − 2

)
[(ḡ+,+

+ − g−,−
− )(ḡ+,−

+ − g−,+
− ) − 9]

(A2)

of the current and the numerator of the energy current

NE = 9�N�S

2
√

2

∑
p

p[g−,−p
− g+,p

+ + (2 + g−,p
− g+,−p

+ )

× (g−,−p
− + g+,p

+ )]. (A3)

The common denominator is given by

D = 32 + 2
∑
p,q

gp,q
p

[
3 + gp,q

p

(
gp,−q

p − ḡ−p,q
−p

)]

+
∑

p

[
10gp,−

p gp,+
p + g−,p

−
(
5g+,−p

+ − 17g+,p
+

)
− 5gp,p

p gp,−p
p

(
g−p,−p

−p + g−p,p
−p

)]
. (A4)

Here, gp,q
α = {1 + exp[(p�ε

2 + q �S√
2

− μ)/kBTα]}−1 compactly
denotes the Fermi function evaluated at the Andreev bound
state addition energies with p, q ∈ {−1, 1}, and ḡp,q

α ≡ 1 −
gp,q

α . For the sake of a compact notation, we also identified the
terminals α = L, R with the values α = ∓. The corresponding
current and heat current on the left normal lead follow from
the mutual replacement {εL ↔ εR, TL ↔ TR}. We note that
NI and D are unaffected under this transformation since the
currents through the normal leads are identical, IL = IR. On
the contrary, NE experiences a change in sign leading to the
energy conservation Q̇L + Q̇R = μIS .

A closer inspection of the numerator NI reveals that the
current through the superconductor only vanishes if the term
in its first parenthesis nullifies, since the denominator is
always finite. This gives us the condition

2 =
∑
p,q

gp,q
p

∣∣
μ=μS

, (A5)

which defines implicitly the nonlocal Seebeck potential μS .
Figure 6 of the main text visualizes that this expression
μS (dashed purple line) asymptotically approaches the es-
timates μS± (dotted black lines), Eq. (15), of the mapped
single-quantum-dot model. This asymptotic behavior, approx-
imated as

μS ≈
⎡
⎣�ε −

√
2�S sinh

(
�ε

2kBT

)
sinh

(
�S√
2kBT

)
1 + cosh

(
�ε

2kBT

)
cosh

(
�S√
2kBT

)
⎤
⎦ δT

4T
, (A6)

follows from the linearization of Eq. (A5) in μS and the
temperature difference δT . In the limit �S, |�ε| � kBT , this
reduces for sgn(�ε) = ±1 to the branches μS±, respectively.
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