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The Landau-Zener transition is a fundamental concept for dynamical quantum systems and has been

studied in numerous fields of physics. Here, we present a classical mechanical model system exhibiting

analogous behavior using two inversely tunable, strongly coupled modes of the same nanomechanical

beam resonator. In the adiabatic limit, the anticrossing between the two modes is observed and the

coupling strength extracted. Sweeping an initialized mode across the coupling region allows mapping of

the progression from diabatic to adiabatic transitions as a function of the sweep rate.
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The time dynamics of two strongly coupled harmonic
oscillators follows the Landau-Zener model [1–4], which
is used to describe the quantum mechanical mode tun-
neling in a nonadiabatic transition. This phenomenon is
observed and utilized in many areas of physics, e.g.,
atomic resonances [5], quantum dots [6], superconducting
qubits [7], and nitrogen-vacancy centers in diamond [8].
It is also possible to create classical model systems ex-
hibiting the same time evolution, which until now have
been restricted to optical configurations [9,10]. Such sys-
tems are well suited for the study of diabatic behavior
over a wide parameter space; for example, nonlinearities
could be readily introduced, potentially leading to chaotic
behavior [9,11].

Nanomechanical resonators with frequencies in the
MHz range can be realized with high mechanical quality
factors [12,13] and easily tuned [14] in frequency. This
makes them particularly well suited for exploration of their
coupling to other mechanical, optical, or electrical micro-
wave resonators. Strong cavity coupling in the optical or
microwave regime has been widely studied as it enables
both cooling and self-oscillation of the mechanical modes
[15–18]. In addition, the time-resolved Rabi oscillations
between a strongly coupled two-level system and a micro-
mechanical resonator have been observed [19].

Purely mechanical, static coupling between different
resonators [20–23] and between different harmonic modes
of the same resonator [24] has also been demonstrated.
Here, we explore the coupling between the two fundamen-
tal flexural modes [25] of a single nanomechanical beam
vibrating in plane and out of plane, respectively. We study
the adiabatic to nonadiabatic transitions between the two
strongly coupled classical mechanical modes in time-
dependent experiments, in correspondence to the Landau-
Zener transition.

The nanomechanical high-stress silicon nitride string
used in this work is shown in Fig. 1. Two parallel gold
electrodes vertically offset to the beam are used to
dielectrically couple the beam oscillation to an external

microwave cavity with a quality factor of � 70 at a
resonance frequency of 3.44 GHz [26]. Displacement of
the resonator leads to a change in capacitance between the
two electrodes, thereby detuning the resonance frequency
of the microwave circuit and creating sidebands with a
frequency offset equal to the mechanical eigenfrequency.
The inductively coupled microwave cavity is driven by a
signal generator; the transmission signal is demodulated
and fed to a spectrum analyzer as depicted in Fig. 1 and
described in more detail in [26]. In addition, a microwave
bypass capacitor is used in the ground connection of one
electrode which allows application of additional dc bias
and rf voltages to the electrodes. This is used to actuate
the mechanical resonator via the dielectric driving mecha-
nism [14,27]. At the same time, the dielectric coupling
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FIG. 1 (color online). The SEM micrograph of the 55 �m long
and 260-nm wide silicon nitride string resonator [green (dark
gray)] taken at an angle of 85� also depicts the two adjacent gold
electrodes [yellow (light gray)] used to dielectrically drive, tune,
and read out the resonator motion. The arrows denote the two
mechanical modes, one oscillating parallel and the other per-
pendicular to the plane of the chip. The simplified measurement
scheme [26] shows the connection of the electrodes to the
readout cavity (gray box) and the microwave bypass capacitor
in the bottom left.
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provides a way to tune the resonance frequency of the two
mechanical modes: The static electric field between the
electrodes polarizes the dielectric resonator material
which is then attracted to high electric fields, thereby
changing the spring constant of the modes via the result-
ing force gradient [14]. In the chosen geometry, where the
bottom of the electrodes is flushed with the top of the
beam [26], a rising dc bias voltage causes the frequency
of the in-plane mode to decrease and the out-of-plane
frequency to increase [28]. All experiments are performed
at room temperature at pressures below 5� 10�4 mbar.

At low dc bias voltages, the in-plane mode of the 55 �m
long beam has a higher resonance frequency than the out-
of-plane mode. This is a result of the 260 nm beam width
exceeding the beam’s thickness of 100 nm, which leads to a
higher rigidity for the in-plane mode [13]. Thus, by in-
creasing the dc bias voltage, we are able to tune the two
modes into resonance at a common frequency of approxi-
mately 6.63 MHz. The coupling between the modes has
been observed for several resonators on various chips and
is at least partially caused by the spatially inhomogeneous
electric field [29]. There might also be an additional,
purely mechanical coupling mediated by the prestress in
the beam. The characteristic avoided crossing diagram of
two coupled oscillators can be obtained by measuring the
driven response of the two modes at different dc bias
voltages, as shown in Fig. 2.

Splitting this diagram into an upper and lower branch
and fitting each data set with a Lorentzian allows the
extraction of the resonance frequencies and quality factors
for each dc bias voltage applied to the electrodes. Both
modes exhibit a quality factor of approximately 80 000,
somewhat lower than in previous measurements [26],

presumably caused by fabrication imperfections. The ei-
genfrequencies extracted from the anticrossing diagram
are depicted in Fig. 3. A few data points around 6.5 and
7.4 V in the upper branch were omitted because of an
insufficient signal to noise ratio.
For our system, the standard model of two coupled

harmonic oscillators [30] needs to be expanded, as both
oscillators react differently to the tuning parameter (the dc
bias voltage). We use the generalized differential equation
for the displacement un of each mode n (n ¼ 1, 2)

meffu
00
n þmeff�u

0
n þ knmun ¼ 0 (1)

with

knm ¼
�
k1 þ kc �kc

�kc k2 þ kc

�
; (2)

where meff denotes the effective mass and � ¼ !=Q the
damping constant of the resonator (identical for both
modes), kc the coupling between the two modes, and kn
the spring constant of the respective mode. As the dc bias
voltage polarizes the resonator material and creates an
electric field gradient, the additional force gradient seen
by the beam depends on the square of the voltage. We use a
second-order series expansion around U0 to describe the
tuning behavior: kn ¼ k0 þ �nðU�U0Þ þ �nðU�U0Þ2
with �n and �n as linear and quadratic tuning constants,
assuming that both modes have the same spring constant k0
at the voltageU0 corresponding to zero detuning. Note that
the influence of the quadratic term is less than 15% in the
whole voltage range [29]. The two solutions of the differ-
ential equation (1) describe the two branches, and their fit
to the experimental data is shown as solid lines in Fig. 3.
The extracted frequency splitting
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FIG. 2 (color online). Both mechanical modes can be tuned in
opposite direction by increasing the dc bias voltage applied to
the electrodes. The signal power of the driven resonances is
shown color-coded versus dc voltage and drive frequency. Note
the clear avoided crossing between the two modes. The three
circles denote the initial state (I) and two possible final states
after an adiabatic (A) or diabatic (D) transition through the
coupling region, as described in the text.
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FIG. 3 (color online). Frequency of the upper (red) and lower
(blue) branch versus dc bias voltage. Each dot represents a value
extracted from a Lorentzian fit of the data shown in Fig. 2, and
the solid lines are a fit of the theoretical model described in the
text. IN and OUT denote the in- and out-of-plane mode of the
beam.
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at U0 ¼ 6:547 V is much larger than the linewidth of
�=2� ¼ 82 Hz; thus, the system is clearly in the strong-
coupling regime.

When slowly (adiabatically) tuning the system through
the coupling region, the system energy will remain in the
branch in which it was initialized, thereby transforming an
out-of-plane oscillation to an in-plane motion (and vice-
versa for the other mode). At high tuning speeds, the
diabatic behavior dominates and there is no mixing be-
tween the modes. This classical behavior [30] is analogous
to the well-known quantum mechanical Landau-Zener
transition. The transition probabilities are identical in the
quantum and classical case:

Pdia ¼ exp

�
���2

2�

�
; Padia ¼ 1� Pdia; (4)

where the change of the frequency difference between the
two modes in time

� ¼ @ð!1 �!2Þ
@t

using !n ¼
ffiffiffiffiffiffiffiffiffi
kn
meff

s
(5)

denotes the tuning speed [29].
The measurement sequence is depicted in Fig. 4(a): the

system is initialized at point I (see Fig. 2) by applying a
6.6647 MHz tone and a dc bias voltage of 3.6 V to the
electrodes. At t ¼ 0, the voltage (blue line) is now
ramped up to 9.1 V within time �. As the start and stop
frequencies are kept constant throughout the experiment,
changing � changes the tuning speed � and, therefore, the
transition probability. Thus, the system’s energy is dis-
tributed between point A or D (see Fig. 2), depending on
the ramp time �. At t ¼ 0, the mechanical resonator gets
detuned from the constant drive frequency. Therefore, its
energy starts to decay as reflected by the decreasing
signal power [green dashed line in Fig. 4(a)]. After a
short additional delay of � (to avoid transient artifacts
in the measurement), the decay of the mechanical oscil-
lation is recorded with the spectrum analyzer. An expo-
nential fit to the signal power, symbolized by the dotted
black line in Fig. 4(a) allows the extraction of the oscil-
lation magnitude at t ¼ �, which is normalized to the
magnitude measured before the transition at point I to
account for slight variations in the initialization. This
experiment is repeated with many different ramp times
� and with the detection frequency of the spectrum ana-
lyzer set to monitor either point A or D. The results of
these measurements are shown in Fig. 4(b). The data
clearly show the expected behavior: For short ramp times
below 0.2 ms, the diabatic behavior dominates. For long
ramp times, the adiabatic transition prevails, even though
mechanical damping decreases the signal for large �.

As can be seen in the inset of Fig. 4(b), the sum of the
two curves perfectly follows the exponential decay of the
mechanical energy (solid line). This decay in amplitude
between t ¼ 0 and t ¼ � has to be accounted for in the

theoretical model and, therefore, an additional decay term
e��t is introduced to Eqs. (4). The solid lines in Fig. 4(b)
show the resulting transition probabilities to point A and D
and are calculated by using the � and � obtained from the
data in Fig. 3. Themeasured data was rescaled by a constant
factor with no free parameters to represent the probability
distribution of the resonator’s energy after a transition [29].
A third state, representing the probability that the mechani-
cal energy decays, is required to keep the sum of the
probabilities at one. It is determined from the inset and
shown as a green dashed line in Fig. 4(b). The correspond-
ing decay constant 1=� ¼ 1:92 ms is identical to the one
extracted from the spectrally measured quality factor. Note
that dynamics with a time constant much smaller than 1=�
are observed, demonstrating coherent control of the system.
In conclusion, we utilize the strong coupling between

two orthogonal modes of the same nanomechanical reso-
nator by tuning these two modes into resonance to analyze
their time-dependent dynamics. After characterizing the
coupling, we are able to model the time-resolved transition
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FIG. 4 (color online). The measurement sequence of the time-
resolved experiment is shown in (a). At t ¼ 0, the dc bias voltage
(blue line) is ramped up in the timespan �, after the delay � the
measurement of the mechanical signal power (green dashed line)
starts at point A or D in Fig. 2 and a fit (black dotted line) is used
to extract the magnitude of the beam oscillation at t ¼ �. The
normalized signal power at t ¼ � and, thus, the transition proba-
bility obtained for different ramp times � measured at point A in
Fig. 2 (blue triangles) or point D (red dots) is plotted in
(b) together with the theoretical model described in the text
(solid lines). The inset shows the sum of both measurements and
displays a clear exponential decay. The corresponding decay
probability is represented by a green dashed line in the main plot.
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behavior between the two modes. The entire dynamic
range between fast and coherent diabatic and slow adia-
batic passages is accessible in the experiment, and a good
agreement between theory and experiment is observed.

The experiment is conducted with approximately 109

phonons in the vibrational mode of the resonator; thus, not
the single-particle probability function but the energy dis-
tribution of the ensemble is measured in the classical limit.
Since the (strongly) nonlinear regime of the utilized nano-
mechanical resonator can be easily accessed, the presented
system could also be used to study the coupling and the
time-dependent transitions of two nonlinear oscillators
[31,32] and the development of chaotic behavior [11,32]
in the classical regime. Combining cavity-pumped
self-oscillation [16] with the coupled resonator modes
presented here allows the study of synchronization and
collective dynamics in nanomechanical systems, as theo-
retically predicted [33,34]. Furthermore, after the recent
breakthrough in the ground state cooling of mechanical
resonators [17–19], the coupling between two quantum
mechanical elements becomes accessible.

Financial support by the Deutsche Forschungsge-
meinschaft via Project No. Ko 416/18, the German
Excellence Initiative via the Nanosystems Initiative
Munich (NIM) and LMUexcellent, as well as the
European Commission under the FET-Open project
QNEMS (233992) is gratefully acknowledged. We thank
Andreas Isacsson for stimulating discussions and Darren
R. Southworth for critically reading the manuscript.

*kotthaus@lmu.de
†weig@lmu.de

[1] L. D. Landau, Phys. Z. Sowjetunion 2, 46 (1932).
[2] C. Zener, Proc. R. Soc. A 137, 696 (1932).
[3] E. C. G. Stueckelberg, Helv. Phys. Acta 5, 369 (1932).
[4] E. Majorana, Nuovo Cimento 9, 43 (1932).
[5] J. R. Rubbmark, M.M. Kash, M.G. Littman, and D.

Kleppner, Phys. Rev. A 23, 3107 (1981).
[6] J. R. Petta, H. Lu, and A. C. Gossard, Science 327, 669

(2010).
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